SUMMARY

()F THE

PRIMARY TRIANGULATION

ENECUTED $13 X^{\circ}$ THE

LNITED STATES GEOLOGICAL SURVEY

BETIVEEN THE YEARS 1882 AND 1894

13
HENRY GANNETT
ChHER Toromilapher

EATRACT FROM THE SIXTEENTH ANN゙TAL REPORT OF THE SURVEY, 1891-93 PART I-DIRECTOR'S REPORT AND PAPERS OF A THEORETIC NATERE

WASHINGTON GOVERNMENTPRINTINGOFFICE 1596

SUMMARY OF THE PRIMARY TRIANGULATION EXECUTED BY THE UNITED STATES GEOLOGICAL SURVEY BETWEEN THE YEARS 1882 AND 1894.
$B Y$
HENRY GANNETT,
CHIEF TOPOGRAPHER.

SUMMARY OF THE PRIDARI TRIANGULATION EXECUTED BY THE UNITED STATES GEOLOGICAL SURVEY BETWEEN THE YEARS 1882 AND 1894.

By Henry Gannett.

Since the inception of topographic work by the United States Geological Survey in the spring of 1882, primary triangulation has been carried on upon an extensive scale, for the purpose of furnishing ultimate control for maps. To convey an idea of the magnitude of these triangulation operations, it may be stated that during these thirteen years no fewer than 1,295 primary points have been located, furnishing control for fully a half million square miles of country, or one-sixth of the area of the United States, excluding Alaska.

Since the primary purpose of this work has been to control maps upon scales not ordinarily exceeding 1 mile to 1 inch, the extreme of accuracy has not been sought, but only such degree of accuracy as would insure that no errors perceptible upon the scale of the map could accumulate.

Whatever work has been done by other organzations which is deemed to be of sufficient accuracy for the control of the maps of the United States Geological Survey has been utilized, both immediately for the control of topographic work and also for the extension of triangulation therefrom by the United States Geological Survey. The work of the United States Coast and Geodetic Survey has been largely used in this mauner, especially in the eastern part of the country. The maps in New England, New York, New Jersey, and Pennsylvania rest in large part directly upon the triangulation of that organization, while in the Appalachian region triangulation has been extended by the United States Geological Survey from points determined by the United States Coast and Geodetic Survey in its great Appalachian belt. The work of the United States Lake Survey, and that of the New York State survey under Mr. J. T. Gardiner, have been extensively
utilized in a similar manner. In the interior of the country and in the far West, where no work by other organizations exists, primary triangulation has been done ab initio by the United States Geological Survey; astronomic determinations of positions have been made, base lines measured, and expansions effected by it.

As was stated above, 1,295 points have been determined by primary triangulation during the past thirteen years. These are distributed over thirty-three states and Territories, as appears from the following table, which gives the number determined in each State and Territory in which work has been done:
Maine. Michigan 7
New Hampshire......................... 11 Arkansis 84
Vermont Missouri 13
Massachusetts Kausas 291
Rhode Island. Texas 236
Connecticut South Dakota 19
New York Montana 65
Pennsylvania Wyoming 17
Maryland Colorado 10
Virginia New Mexico 32
West Virginia Arizona 27
Kentucky Utah. 2
Teunessee Nevada 12
North Carolina Irlaho. 29
South Carolin: Oregon 4
Georgia California 86

Alabama 3
.

The methods and instruments employed in this work have developed as the work has progressed. This development has been in the direction of economy and efficiency as well as of accuracy, so that at the present time a much higher degree of accuracy is obtained than at the outset, together with a diminished expenditure upon field and office work.

In the early years of the work, base-lines were measured with secondary base bars. These were used up to the year 1887, when long steel tapes, 300 feet in length, under constant tension, were substituted, and have since been employed. They have been found more advantageous for the following reasons: The ground requires less preparation; the base can be measured much more rapidly, and, owing to the diminished number of contacts, with quite as great accuracy. By making the measurements upon cloudy days or at night, the correction for temperature is believed to be determined quite as accurately. Longer bases are measured, thus simplifying the expansion; and bases are measured more frequently, thus affording a greater number of checks upon the triangulation.

During the thirteen years in which this work has been going on, twelve base-lines have been measured in different parts of the country. Their
localities, the date and means of measurement, and their approximate lengths are set forth in the following table:

Base-lines measured by the Cnited States Geological Surrey.

In early years the instruments used were vernier theodolites reading to 10 seconds, with circles $6,7,8,10$, and 11 inches in diameter. In 1889 there were substituted for these, 8 -inch theodolites reading by microscope to 2 seconds, and these have since been employed universally in the primary triangulation.

While there is no question that the results from the instruments first used were amply accurate for the purpose, greater care was required in using them, a larger number of readings was necessary than with the present instruments, and the results were adjusted by least squares, Which tedious operation is rendered unnecessary by the use of the better instruments. Indeed, it is believed that the instruments at present employed are of as high a grade as those in use in any part of the world, and that, by employing sharper signals, by exercising more care in the selection of times for observations, and by taking a larger number of measurements of angles than have heretofore been employed results can be obtained with them equal to the best secured in geodetic work.
The signals used differ with the facilities afforded by the neighborhood. The commonest form, and that which is generally in use in a settled country, is the ordinary tripod and pole, the tripod being swathed in cotton to facilitate finding it. In a wooded, unsettled region, tripods composed of three trees trimmed up are sometimes employed, or a single tree found upon the summit of a station is trimmed up and utilized as a signal. In the Rocky Mountain region a common signal is a cairn of stones upon a summit.

The permanent marks which have been left to indicate the stations also differ widely with the facilities afforded by the country for obtaining the necessary material. Of the total number of stations $(1,295)$, 921 have been marked in a manner which may be regarded as permanent, 253 in a less permanent manner, while 121 have no mark of any degree of permanency. The permanent marks consist of copper bolts set in ledges, holes drilled in ledges, stone posts, buried bottles with
stones set over them, and cairns of stones, upon the largest of which inscriptions have been marked. Irou bolts and pipes set in the ground have been used. In many cases upon the plains section corners of the General Land Office surveys have been located, and in this case the section corner serves as the permanent mark. Buildings of various sorts also serve this purpose in numerous cases. Less permanent marks are marked trees, tripod siguals, etc.
Triangulation has been carried on in the following areas in the years named:
New England, in the years 1887 to 1890, and in 1892.
New York and Pennsylvania, from 1889 to 1894.
Southern Appalachiau region, from 1882 to 1890
Upper peninsula of Michigan, iu 1889.
Arkansas, from 1887 to 1891.
Texas, from 188 t to 1893.
Kansas, from 1885 to 1887, aud iu 1889 and 1890.
Montana, in 1883 and 1884, 1886 to 1889, and in 1891.
Wroming, in 1892.
Colorado, in 1893 and 1894.
New Mexico and Arizoni, from 1882 to 1890.
Idaho, from 1889 to 1892.
California, from 188: to 1893.
Sonth Dakota, in 1891 and 1893.
Oregon, in 1894.
There has been expended upon this triangulation, including base measurement and expansion, and also all salaries and other expenses connected therewith, about $\$ 400,000$, an average per year of $\$ 30,000$, and an average per station located of a trifle over \$300. The average expense of primary triangulation per square mile of area triangulated is about 80 cents. This item differs widely, however, in different parts of the country, being far greater in heavily timbered, level country, where the triangle sides are short and the expenses of clearing and signal-building heavy, while in the Rocky Mountains, when the triangle sides are long and when there is no clearing necessary, the cost is far below the above average.

As the simplest method of characterizing the degree of accuracy of this primary triangulation, the following table of average closure errors of triangles is presented. It is to be understood that in all cases the station adjustments and correction for spherical excess had been made prior to footing up these errors of closure. The work in Texas prior to 1887 and in other areas prior to 1889 was done with vernier theodolites, while the work in those and subsequent years was done with micrometer theodolites.

Closure errors of triangles.

The work in New England, New York, and Pennsylvania has been mainly supplementary to the work executed by the United States Coast and Geodetic Survey, and that in New York to the work of the United States Lake Survey aud the New York State survey. In some places it has been found necessary to extend triangulation from the existing work of these organizations in order to furnish eontrol for areas to be surveyed in other localities, and in certain cases the stations in preexisting work were too far apart to serve the purposes of the topographer, and it was therefore necessary to multiply stations within preexisting triangulation. The work done in these States by the United States Geological Survey is, therefore, not in compact bodies, but consists of a little work here and a little there.

The work in the Appalachian Mountain region south of Mason and Dixon's line is very extensive, spreading from the Blue Ridge westward across the valley and over most of the Cumberland Platean. Its northern limit is Mason and Dixon's line, and its southern limit is the neighborhood of Atlanta, Ga., and Birmingham, Ala. This work rests upon stations of the United States Coast and Geodetic Survey along the Blue Ridge and the outlying ridges to the eastward, known as its Appalachian Belt. Most of the stations of the United States Coast and Geodetic Survey on the Blue Ridge from Maryland to Georgia have been sccupied by the United States Geological Survey as initial points for triangulation. The work in this region has been done throughont with 6 -inch and 7 -inch vernier theodolites reading to 10 seconds, and has been subjected to least square figure and station adjustments.

A little triangulation has been done on the upper peninsula of Michigan for the purpose of controlling snmeys of the Marquette iron district. This triangulation rests mpon two stations of the United States Lake Survey, near Marquette.

The northwestern quarter of the State of Arkinsas has been quite

$$
16 \text { (IEOL, P'T 1-5 } 6
$$

well covered by triangulation. This was initiated by a base measured in the eastern part of Indian Territory, near Fort Smith, Ark., the site being a tangent of the St. Louis and San limanciso Railroad. The base is 2.84 miles in length. It was measured at night with a 300 -foot steel tape. After expanding, triangulation was carried eastward to the neighborhood of Little Rock, opposite which, near Argenta, a second base, 3.72 miles long, was measured in a similar mamer upon the roadbed of the St. Lonis, Mron Mountain and Southern Railroad. The angles in the triangulation were measured with a 7 -inch vernier theodolite reading to 10 seconds.

From stations in the eastern portion of this belt, work was extended northward across the Arkansas and over the Ozark Platean to the Missonri boundary, thence returning sonthward near the west bonndary of the State, and closing upon stations in the western part of the belt. Angles in this work were measured with an S-inch micrometer theodolite.

The triangulation in Kansas is in three detached belts, each of which starts from a line of the transcontinental triangulation of the United States Coast and Geodetic Survey. The southern belt begins with the line Fulton-Hutton Mound, some 20 miles east of the Missouri-Kansas bonndary, and proceeds nearly due west in a narrow belt of triangles and quadrilaterals until the Arkansas River is reached at Hutchinson; thence the general course of the river is followed as far as Larmed, at which point the conditions favored a detour sonthwestward to Dodge, after which the river was followed to its present termims, near Hartland.

The first part of this belt was executed in 185.5 with a Gambey 11-inch vernier thendolite. In 1889 the belt was continued westward as far is Spearville with a Fauth S-inch micrometer theodolite. At Spearville a base 7.1 miles in length was measured with a 300 -foot steel tape, with a probable error of 0.39 of an inch. The next year work was resumed at Spearville and contimed westward to the present terminus of the belt, at Hartland.

A second belt of triangulation was executed in 1886, work being based upon the United States Coast and Geodetic Survey line, Blue-Mound-Eckman, near Lawrence, Kans. This belt runs northwestward and then westward. Angles were measured with the Gambey 11-inch theodolite above referred to.

A thind belt, lying west of that just described, uses for initial positions three stations of the United States Coast and Georletic Survey, Blind Creek-Frey. Wilman. This belt first proceeds northward abont 40 miles, and then takes a general westward course to its present temmus, near Leland, Kans. It consists of a series of wellproportioned quadhilaterals of larger size than the other two belts, the increase in size being rendered possible by more favorable topographic conditions. The instrument used was a Fauth S-inch micrometer
theodolite. Angles were read by the method of direction. both singly and combined, in such manmer as to give check observations on each angle which entered into the position. ddjustment by least squares Was made in the enlier work. When remier theodolites were employed; but in the later work. when better instrmments were employed, it was considered unnecessary. Nearly all the siguals consisted of triporls built of lumber. In connection with this triangnlation a large number of section comers were located, nsmally by measinring directions and distances from the triangulation stations.

Triangulation has been carried on in Texas in two localities, namely, middle Texas, between longitudes $90^{\circ} 30^{\prime}$ and 1010 . and western. or trans-Pecos, Texas. The work in the latter section extends from the western point of the State as far eastward as longitude 1030°. and from the Rio Grande to the New Mexican boundary line, inclosing an area of abont 15,000 square miles.

The triangulation in middle Texas envers an area of about 50,000 square miles, nearly rectangular in shape. The work in this region was commenced in the neighborhoorl of Austin in the summer of 1884. A base-line 6.4 miles in length was measured with four-meter bars, and was connected with the astronomical determination of the United States Coast and Geodetic Survey at Anstin. Work was carried on continuously until 1889, corering the area closely. In the latter year a verification base was measmred near Albany, in the northern part of the State. This Albany base is about 9 miles in length, and was meas ured twice with a 300 -foot steel tape under a tension of 20 pounds. The instrmments used in the triangulation were S.inch theodolites with verniers reading to 10 secouds, up to and including 1886, and dmring the remainder of the work an 11 -inch theodolite reading by microscopes to single seconds was employed. The work done with the first-named instruments was adjusted by least squares: that subsequently done was not subjected to this adjustment. The signals were mainly tripods made from sawed lumber, with an interior scaffold for the support of the instriment whenever it was necessary to raise it from the gromul.

In trans-Pecos Texas triangulation was commenced in the spring of 1590. A base-line was measured on the roadbed of the Texas and Pacific Railway, and an astronomic determination of position was made at Sierra Blanca. In this region the triangulation stations were usially the summits of sharp and well-refned mountain peaks, which were marked by piles of stomes that served as signals.

Triangulation in the Black Hills of South Dakota originated in a base line in the valley of Box Elder Creek, about + miles northeast of Rapid. This base is nearly 5 miles in length and was measured with a 300 -font steel tape under a uniform teusion of 20 pounds. The probable error of the measurement is 0.84 of an inch. The initial astronomic point is a pier in the enmety comrthonse at Rapid. the position of which was determined in 1890 . The instrment nsed in the trinngula-
tion was an S-inch theodolite reading by microseopes to 2 seconds. The signals comsisted of tripods of hmber with a signal pole in the center, under which the instrment was placed.

A little triangulation has been done in the Elk Mountains of Colorado for the control of a sinall area about Aspen. This work rests mon a base-line 1 mile in length measured along one of the streets of Aspen, and for astronomical position the work was connected with a station of the United States Coast and Geodetic Survey on Treasury Mountain. Angles were measured with an S-inch vernier theodolite.

Triangulation in southern Wyoming rests upon a base-line about 2.5 miles w length measured along the roadbed of the Union Pacific Railroad just north of the town of Laramic. The initial position is an astronomical station in Laranie determined in 1872 by the Wheeler Survey. The instrument used in this triangulation was an 8 -inch micrometer theodolite.

Triangulation in Montana covers an area of about 50,000 square miles. A base line located just west of the town of Bozeman, which was measured liy officers of the Wheeler Survey in 1877 with a steel tape, was remeasured in 1883 by the United States Geological Survey with a secondary base apparatus. It was expanded and the work carried south ward, to inchude the area of the Yellowstone National Park, during 1883 and 1884. In subsequent years the work was carried eastward, northward, and westward over much of centra? and western Montana. The angles were measured with an S-inch vernier theodolite. In 1889 the triangulation was extended eastward down the valley of the Yellowstone to the neighborhood of Fort Custer, using an S-inch micrometer theodolite.

Triangulation in Idaho covers an area of about 15,000 square miles, forming a parallelogram about 100 miles in breadth by 150 in length, extemding from the longitude of Hailey on the east to the western boundary of the State. Work was begun in the summer of 1889 and continued until 1892 , inclusive. It rests upon a base-line 1.75 miles in length measured near Boise with a 100 foot steel tape, and the resulting probable error of difterent measmements was 0.19 of a foot. The initial astronomic position is in the city of Boise. The instruments used in this triangulation were at first a 7 -inch vernier theodolite, and during the seasons of 1891 and 1892 a 10 -inch micrometer theodolite. The work doue with the vernier theodolites was adjusted by least squares; that exemuted with the 10 -inch theodolite was not subjected to this adjustment.

Triangulation in California. Nevada, and Oregon is in three distinct parts, which may be distinguished as the Cascade section, in northern California and southern Oregon; the Gold Belt section, including the Sierras in the latitude of Red Blaff, the Yosemite Valley, and from the Sacramento Valley eastward into Nevada; and the southern Califoruia section.

The work in the first section was begun in $188{ }^{\circ}$ and continued mentil 1887. All distances, azimuths, and positions depend on the line LassenShasta, as determined from unclosed triangles of the United States Coast and Gendetic Survey. The instriment used in this portion of the work was an 8 -inch 10 -secoud vernier theodolite. Natural points mainly were sighted, since sharp peaks were generally nsed. The work was adjusted by least squares.

In the Sierra Nevada, work was commenced in 1885. This work rests upon the line Marysville Butte-Pine Hill of the United States Coast and Geodetic Survey. Other lines determined by the same organization were nsed as check lines. During the first year the angles were measured with a 7 -inch vernier theodolite. Subsequently work was done with similar instruments having an S-inch circle. Upon most of the stations on this work signals were built, and in many cases these were very high and difficult to construct.

Triangulation in southern California was begun in 1891, and covers an area of about 5,000 square miles. The line Southeast Base-San Juan, as determined by the Uuited States Coast and Geodetic Survey, serves as a base-line for this work. The instrument used was an 8-inch micrometer theodolite.

The triangulation in the plateau region of northern New Mexico and Arizona and parts of adjacent States depends on a base measured at Fort Wingate, N. Mex. This was measured in 1881 with four-meter bars, and was expanded and triangulation depending upon it was carried forward until 1890. The initial position, which is Fort Wingate, was located in 1883. The instrument used in the triangulation was a $10-$ inch vernier theodolite, prior to 1890 , in which year an S-inch micrometer theodolite was used. Many of the signals of this triangulation were natural points, consisting of high, sharp peaks. In other cases cairns of stone or trees were used. This triangulation, being carried on in a region of high mountains, consists of very large figures, lines of 100 miles in length being not uncommon. The area covered by this triangulation is approximately 94,000 square miles.

I NDEX

Page.	Albirupenn suries of the Page.
Abictites acicularis Sap................... 526	Albirupean series of the Potomac forma-
Abietites frnctifolius Sap.................. 518	Heanete Portugal $473,51.3,524,531,532$
Abrasive inaterials, statistics of prodnction of	
Acrostichites 5. . 5	Alethopteris Choffati Sap 518
Acrostichopteris........................... 523	Alethopteris ? discerpta Sap............... 518
Acrostichopteris ilensitolia Font........... 522	Algat in the Jurassic of Portural.......... 500
Acrostichopteris longipennis	Alge in the Lower Cretaceons of l'urtugal. 533
	lgites catenelhoides Sew................. 4 2?
Actinolite-schist, origin and character of. $703,70{ }^{7}$	Algites raldensis Sew........................ . 482 Algonkian rocks, character, idelimitations,
Adams, Frank D., cited........ 593, 748.750	aud stratigraphy of 744, 759, 766
Arlams, Leith, remains of dinusanr (Aretosinurus) described by.................. 152	Alismites primigenius Sap................... 526 Alligator mississippiensis, hind limb of
Adiautum ancimixtolimu Sap 526	A": tusamrus feratus comprarel with
Aliautum dilaceratum Sap 526	32
Adiantum dispersum Sap.................. 51	Anosamus, fescription of remains of 163
Adiantunn distractı	
Adiantum eximinm Salp.................... 526	
Adiantum expansum sap	
Adiantum longingum sap 5 \%	Almargem, Portugal, plant-hearing heds
Adiautum subtilinervium sap.............. 5 . S_{6}	
Adiantum tenellum Sap	anti
Adirondack district of pre-Cambrian rocks,	Alsatia, Buntersandstrin uf.................. 482 Almunum, statistics of production of..... 32, 59
Administrative Branch, work of............ 84-880	Amboy Cays, geologic :ige and thoral of.... 469
Adoxa pracatavia sap... ise, 539	, $513,423,524,533,542$
Aetosauria and Dinosanria, relationship be- tween \qquad	American and Europe'an dinosanrs, compari- sons of................................... 18:-186
c̈tosaurns forratus Fraas, figure of 231	Ammopus, figures of footprints of......... 254
storation of 231	Ammosaturus, description of rematins of.... 150
hind limb of Alligator mississippiensis coropared with hind limb of \qquad	Ammosanris major Marsh, figures ot remains of.
A frica, remains of dimusaurs from.	Amphibole, metasomatic alterations of..... ${ }^{\text {a }} 9$
Agathanmas Conue, characters ont 217	Analogies in the Lower Cretaceors of Europe
Agnotozoic, a term proposed by R. I. Irving for a me-C'ambrian era or srstem.. 760	and America, paper by L. F. Warl on....................................463-i42
A hern, Jeremiah, work of 77	Anchisantida, discoveries of remains u1... 147
dix, France, work on fussil phants at....... 516	claracters of 239
Alabama, allotment of muey for geolonic work in \qquad	figures of remains of 248-952 Anclisaurns cularns Marsh, deseription of
greologic work in 19, 39.40	remains of 148 -149
palentologre work in 38, 39	lescription of restoration of........... 150-151
Thse:alonsa formation of................ 513	tigures of remains of 240-252
Alaska, topugraphic survers in 459-461 fossil plints from 531,532	Auchisaurns majur Marsh, description of remains of 1ti-148
Alaskan glaricra, paper ly̧ II. F. Hefil 011. ... 415-461	Anchisaurns polyzehns Litchcock, figures of remains of.
Alherta, Lower Cretaceous of.............. 469	siaurus solus
Albian formation, genloric age of. 469. 48, 513,514	remaius of 149-150.
Albian of P'ortugal, thora of the........... 482 ,	
515,518-5211, 523, 52t, 526-5.36, 539	Ancimiliun lobulatum sap................. ine 0
	88

Paige	Pa
minimutulum Sap.............. 526	Arizona, fo
Ancimilium tenerum Sap. 526	Arkansas, paleontolugie work
Angiosperms, arcleetyp:l. 835	Arkose, origin and charaeter "
Ankerite, metasmiatic alterations of	Artesian-well prospeets in the Atlantic
Anomuep pus, figures of fort prints of 254 Antediluvian House, Portland, Eacland,	Coastal Plain region, preparation of report on.
tree at....................... 490 ,	Asbestos, statistics of production of - 59, 60
Anthony and lirackett, cited............... 637	Ashdown Sand, geologic position of 477, 479
Anticline and syncline, figures of obverse halves of 618	Ashley Mill, N. Y.. belt of folded and pitclu. ing strata at. 552, 554
ticlinoria, definition and types of 60t-	Asia, remains of dinosaurs from........... 226
608, 609, 611-612, 613-620	Aspualtum, statisties of production of..... 59,60
Autinony, slatistics of promuction of..... 52,59	Aspidium frederieksburgense Font........ 521
Apatusaurus Marslı, descriptions of...... 166-168	Aspleniopteris pinnatifida Font............ 231
Apatosanrus ajax Marsh, figures of remains of $278,280,282,316,322$	Astradon Johnstoni Leidy, dfscovery of remains of.................. 164
patosaurus laticolis Marsh, figures of re-	figures of tertlı of...................... 164
mains of 280	Atane, Greenland. Cenomanian flora of... 481.482
pemines of Emilia, Italy, Cretaceous elays of the. \qquad	Aherfield beds, genlogic place and plant berls of. 469, 474, 479.481, 482, 499
ppalachian region, geologie work in 16-22	Atlanta Exposition. administrativeworkat. 42-
work on paper on influenee of orogenic morements in 18	$43,61,79$ coastal Plain region, geologic
y	work in 23-23
resources of........................ 61	atic section of topograply, work of... 62, 64
Appropriations and allotments............ 9-13	tosanrida, descriptions of genera and
tenorlstes Pemantii,	spreeies of....................... 166-175
1 n	haracters
ruis with united	figures of remains of.... 2 24-292,316, 322,328
236	tosaurus beds
ptian formation of Portugal, flora of the.. 514, 518-520, 523, 526-530, 533	from 164-165 Atlantosaurus immanis Marsh, deseription
1rusition of the. 469, 481	of remains of. 166
A qui Monntains, Ttah, pre-Cambrian rocks	figures of remains of
	Atlantosaurus montants Marsh, rescrip.
ia Creek, Va., sandstone at........... 4i2, 511	tion of
quia Creek series of the Potomae forma-	figures of remains of. 2i4, 278
tion 473,	Augite, motasomatic alterations of.......... 690 Auriferons deposits of Georgia aml the
lia 534	Carolinas, work on................. 21-22
Aralia calımaxpla Sap.............. 520, 531,539	Anstralia, remains of dinosaurs from....... 226
Aralia formosa Heer....................... . 531	Ipswieh beds of......................... 530
Aralia provima Sap 526, 539	Jurassic beds of...................... 482. 484
Aralia Wellingtoniana Lx.................. 538	Anstria, We ealden flora of................ i81 482
Araucaria............................... 492, 494	Keuper deposits of..................... 517
Araucaria pippingfordensis (Ung.) Schimp. 482	Anstrian Silesia, Urgonian flora of....... 481, 482
A raucarian type of structure 491,499	Autorlastic roeks, origin of................ 679
Araucarioxylon 491	zone of.............................. 689-682
Aramearioxylo	pre-fambrian 682
491, 498	weiclmugs cleavage,
Aranearioxylon arizonicum Kn 499	cause of........................... 645
Arancarioxylon rirginianum Font........ 499	A valon series of rocks, description of.... 812-813
A raucarioxylon Wallacei Kn......... 482, 495, 498	
A rancarioxylon We ebbii Kn 482, 496, 988	
A raucarites Mïllhausianus Göpp 499	Babl, Crrus C., work
Archean rucks, character, origin, delimita.	Bagg, R. M.
tions, and stratigraphy of........ $744-759$	Baiera............................... . 521, 534, 535
of the Lake Superior region........... $781-783$	Majera cretosa Schenk. 526. 530
Archetrpal angiosperms 465,535	Baiera dilatata Heer 518
Argille acagliose 470, 500,503	Bajeropsis \% 3 .
Argyrosanrus, a Patagonian sauropod, discovery and naming of remains of... 185	Bajoeiau of Portugal, plaut-bearing beds of \qquad
Arisfolochia Daveanana Sap 526	Baker, Marcus, work of. 82-83
Aristolochia retustior S:lp 526	Batenide (fossil) of Italy 501.502
rizona, hydrographie work in............. . 44. 46	Baldwin. II. L., jr., work of 65, 77

Baldwin, Prentiss, cited on movement page. Alaskan glaciers.................. . 441,445
Baltimore, Md., Potomac plants from..... 539, 542 Bambusimm latifolinm Merr................... 526
Banat, Ilnugary, Liassic Hora of............. 535 l3anded rocks, canses of structure of....... 663 Bamon, T. M., work of 66 Barnacles, fossil cycad mistaken for . . $501,50=508$ Barnald, E. C worl of .-........................ 66 Barosanrus Marsh, deseription of remains
of . 174-175
Barosaurns lentus Marsh, tigures of can-
dal vertebrat of 175
Barus, Carl, cited 707, 847
Barytes, statistics of production of 37,60
Basal conglomerates, characters of....... 721-724
determination of plane of unconformity
by
728
transformation of erystalline schists to
Basal I'otomac formation, number of fossil
plants from ...
cited
Base lines measured ly the United States Geological survey
Basement complex of the Lake Superior region.

- 0 gion..................................... 781-783

Bathyguatus horeqlis, discovery of remains of
Banxite deposits of Georgia and Alabama, work on.
Bavaria, Rluetic Hora of 482, 484,530
Bayley, W. S., work of 23
Beaman, W. H., work of.
Beccari, l., fossil cyeadean trunk identified ly
502

Berker, Gcorge F., work of.......................... 21-22
cited... . . 634.636 ,
$637,639,641,648,651,653,654,669,671,874$
Beckwith, H. C., dinosaurian remains fonml
by.. 164
Bedding, clnes to............................... . . $559-560$ relation of cleavage to 647-651 characteristics of pre-Cambrian...... 716-720 oecurrence of false............... 559
Belgium, Gault of 481, 482, 530
Bell, Robert, cited.
Bellasian of Portugal, plants of........... 514, 525
Belodon Kaptif von Meyer, figure of pelris of 234
Belodontia and Dinosanria, relationship hetweeu
Beltsrille, Mcl., fossil creads from............ 503
Benét, S. F., cited.
Bennettitcs Saxbyanus Car

- 590

Biancanl, Giacomo, fossils describerl and fir. ured by \qquad
Bibbins, Arthur, aid by 40,41
Maryland cycadean remains made known by 484
Birds and dinosaurs, relationships between. 237
Bjuf, Sweden, fossil plants of. 535-536, 538
"Black dirt" of the Purbeck, fossil cycads from

Black Hills, fossil ereads of the............ 467 481,486 (1'l. CI), 487, 503
fossil woods of thr. 499
Lower Cretaceons of the. $46 \mathrm{f} \%, 470$
pre-Cambrian rocks of the.............. . 81:3-814
Blair, H. S., work of 4
BlankenJurg, fermany, Senomian flora of. 481. 530 Blue Ridge of the Potomar Kiver, pre-Cambrian rocks of . 839
Blyttia infracretacea Sal' 526
Bohemia, Cenomanian Hora of 481,
$482,512,514,515,530,531,532$
Bologna, fossil plants of. . 470,500,501,504,505,509
Borax, statistics of production of 57, 60
Bornholu, Liassic flora of 482, 484
Braclyphecllum 520, 521, 533,534
Brachyphyllum confinsum Sap 526
Brachypliyllum corallinum Heer............ 526
Brachypliyllum Delgadonum Iteer........... 518
Brachyphyllum lusitanicum Sap............ 518
Brachyphyllum majnscnlum Sap............. 518
Brachyphyllum microcladnn Sap........... 518
Brachyphyllum micromerum Heer.......... 518
Brachyphylium obesiforme Sap. 526
Brachyphyllnm obesiforme clougatum Sap 526
Braclyphyllum obesum 526
Brady Glacier, Alaska, descriptiou of 429
Braseniopsis venulusa Sap.................. 526, 539
Braseniopsis villarsioides sap................. 526
Brecciation and brecciatiou pebbles........ 569
Bristow, Heury William, cited 478. 493
British Columbia, pre-Cambrian rocks of... 820
Brägger, W. C., cited 686
Bromine, statistics of production of.......... 5 . 8,60 Brontosaurus Marsll, detailed description
of . 168-173
description of restoration of 173-17
Brontosaurus amplis Mursh, figures of
metacarpal hones of 1
figure of sternal plateof.................... 179 Brontosaurus excelsus Marslı, description of remains of

168-174
figures showing ribs of 170, 171
figures showing pelvis of................. . . 172
restoration of 173-174, 328
Higures showing terminal phalanx of.... 174
figures of remains of - 284-202, 322
Brontozoum, figures of footprints of...... 254
Brook Point, Isle of Wight, fussil plants of. 487, $489,491,492,493$
Brooks, A. H., work of 18-19
Brooks, W. K., cited un early forms of life.. 584
Brown, Robert, cited 494
Brunswick, N. X., fignre showing cleavage as related to faulting in lellgo at 566 Buareos, Portugal. Albian flora of $523,52 t, 536,539$ Buckland, William, Megalosanus named by 163
fossil plantsilescribed by...... 481, 484, 485, 486 Bucklandia anomata (stokes and Webh)

$$
\text { Presl.. } 482
$$

Bucklandia Mantelli Carr....................... 482 Buildiug stone, statistics of production of... 60 Buntersandstein of the Vosges, Hlora of
tlı . 482, 484
Burns, Frank, work of........................... . . . 39-4 0

C．Page．	
Caixoria，Portugal，Aptiantlora of ．．．．．．．．．． 523	Cavities in rorks，conditions of closing of．． $590-$
Calcite，motasomatic alterations	594，853－860
California，allotments of money for geologie work in	conditions for existencenf．．．．．．．．．．．818－853 Cerlrelospermites remilosns Sap．．．．．．．．．．．．．． 526
allotment of money for topographis	Celastrophyllum ．．．．．．．．．．．．．．．．．．．．．．．．． 523,539
	Cement，statistics of production of．．．．．．55－56，60
yeologic work in．．．．．．．．．．．．．．．．．．．．．．．．．35－37	Cementation，metanorphism of rocks by－．684－686
paleontologi• work in．．．．．．．．．．．．．．．．．．． 38	Cementation and consolidation，rocks morli．
hydrographic work in ．．．．．．．．．．．．．．．．．．． 44,46	dly．．．．．．．．．．．．．．．．．．．．．．．．．．．．699－600
topegraphic work in ．．．．．．．．．．．．66，68， 00.71	entation and injection，metamophism
Callorian of Portugal．fossil plants of．．．．．． 517	of rocks bro．．．．．．．．．．．．．．．．．．．．．6＊6－683
Cambrian fossils collerted．．．．．．．．．．．．．．．． 38	Cenmmaian flora of rarious conntries．．．． 181,
mmbriau perioul，character of fammat．．．．．． 582	482，510，514，515．524．526－532，540，542
mbrian rocks，delimita	Cenomanian formation，position of \ldots ． ．．．$+69,479$
lower limit	Central section of topography，work of．．62，64－65
of the Lake Superior region ．．．．．．．．．．．． 796	Ceratups，characters of ．．．．．．．．．．．．．．．．．．．． 216
muconfornity between Keewcenawan and．	Ceratops beds，geologic horizon and geo－ graphic luealities of ．．．．．．．．．．．．206－207
mpbell，M，R．，work of．．．．．．．．．．．．．．．．．．．．．．17－18	Ceratops montanns Marsh，figur
Camptosanida（Camptonotide），characters of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．198－198，243	Ceratopsia，characters of ．．．．．．．．．．．．．．．．．．．1 1 $43,2 \downarrow 3$
1aleonto	Ceratopsidar，geologre horizon，gengraphic
remains of．．．．．．．．．．．．350－356，396，400－406	localities，and general characters of．203，
mptosaurus Marsh，species of ．．．．．．．．．．196－197	
Camptosanrus amplus Marsh，size of．．．．．．． 196	Ceratosanria．familics and genera of．．．．．．．． 240
amptosaurns dispar Marslı，lescription of restoration of ．．．．．．．．．．．．．．．．．．196，197－198	Ceratosanrida，characters of ．．．．．．．．．．．．．．．． 2 ± 0 figures of remains of．．．．．．．．．．260－264．2ヶ2， 398
figures of remains of．．．．．．．．．．352，402， 406	Ceratosanrns Marsh，description of remains
restoration of ．．．．．．．．．．．．．．．．．．．．．．．．． 356	of $\ldots .$. ．．．．．．．．．．．．．．．．．．．．．．．．．．156－163
amptosaurns medius Marsh，size and char－ acters of \qquad	rest oration of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．163．272 ratosaurus nasicornis Marslı．deseription
figures of remaius of．．．．．．．．．350，396，400， 404	of remains of．．．．．．．．．．．．．．．．．．．．． 156 －163
mptosaurus nanus Marsh，size of．．．．．．．． 196	figures of remains of．．．．．162，236，260－264， 398
figures of remains of．．．．．．．．．．．．．．．．．． 35 t	restoration of．．．．．．．．．．．．．．．．．．．．．．．．163，272
mada，Kootanic of ．．．．．．．．．．．．．．．．．．．．．．．． 181	Cercal，Portugal．Crgonian flora of ．．．．．． 514515,
Canada，pre－Camurian rocks of ．．．．．．．．．．809－813	523，536． 539
Cannon．George L．，jr．，dinosanrian remains	r．is．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 539
fonud $1, y$ ．．．．．．．．．．．．．．．．．．．．．．．．．． 205	＋－95
Cape Lisburn，Alaska，fossil plants froun．531，532	Changarniera ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．534－536
Cape Mondego，fossil plants from ．．．．．．．．515， 516	Changarniera dubia Sap
Capellini，G．，cited on age and fossils of the	Chapman，R．H．，work of．．．．．．．．．．．．．．．．．．．．． 64
scaly Clays of Italy．．．．．．．．．．．．．．．． 500	Chara Knowltoni seward ．．．．．．．．．．．．．．．．．481，482
501．502，503，505．509－510	Charpentier Glacier，Alaska．description of．$+ \pm 8$.
aid bre．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 504	－9－430． 433
Carangnejeira，Portugal， A ptian flora of．．．． 523	Chemistry，work of Division of．．．．．．．．．．．．．42－43
Carhoniferons of Portugal，pap	Cheirolepis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $5 ⿰ ㇒ ⿻ 土 一$ 1
	Cheirolepis Chotlati sap ．．．．．．．．．．．．．．．．．．． 526
Carboniferons coal plants，work om．．．．．．．． 21	Cheirolepis Miunsteri Scheuk ．．．．．．．．．．．．．218，520
Cardiodon，an English sauropod，naming of 185	Chert（ferruginous），of igin
Cardiolontidx，characters of ．．．．．．．．．．．．．． ，	of \ldots ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．701－702
rpathian Moun	Chesapreake Bay，plant bedy of shores uf．479，523
514	Cherenne sandstone of Kausas，age of ．．．．． 487
Carpites hurmannix formis Salp ．．．．．．．．．．．． 526	Chico and Tejon fames，discrimination of． 38
Carpites granulatus sap．．．．．．．．．．．．．．．．．．．．． 5 ．${ }^{6}$	China，Jurassic betls of．．．．．．．．．．．．．．．． 482 ，484
Carpites plicicostatus sap ．．．．．．．．．．．．．．．．． 5 ¢	Chloriteschist，origin amd character of．．．．． 706
Carroll，Captain（of the steamship（Gneen）， aid by．．．．．．．．．．．．．．．．．．．．．．．．． $421,420,432$	Chothat，Panl，work on fossil plants br．．．．．54， 515，516，517，523
arruthers，Willim，work on fossil plants ly，．．．．．．．．．．．．．．．．．．．．．．．$+81,484,486,503$	
Carıoll Glacier，Alaska，description of $430,431,433$	Chotratia Francheti Sap．．．．．．．．．．．．．．．．．． 526,536
Caulinites atarims Heer．．．．．．．．．．．．．．．．．．． 526	Chondrites．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 521
Caulinites fimbriatus sap ．．．．．．．．．．．．．．．．．．． 526	Chond
Cavalieri，signor Engineer，fossil plant re－	Chomlritrs intricatus Sternb．．．．．．．．．．．．．．．$\dot{\text { a }} 4$
mains found on estate of ．．．．．．．．．．． 501	Chomlrophyton laceratum Sap ．．．．．．．．．．．．540．542

I'age	Paga
Chondrophytum dissectum Sap and Mar.... 540	Cleavage in igneons rocks 635, 642
Chromic irm ore, statistics of production of. 57, 60	in lrumugeneous rocks................ . 636-643
Chrysoliopteris marchantieformis Sap.... 518	relation to structure forcts of..... .. 637-643
Chrrsosplenium........................... 536	(cross), character and canso of 642-643
Clitar terrane of the Grand Canyon, pre-	(parallel), characterand cause of 643
	in heterogeneous rocks.............. 645-654
Cissites 539	relation of bedding to................ . 64i-651
Cissites obtusiloms Sap............. 526. 532, 542	rotation of . 6 652-653
Cissites sinuosus Sap 526	relations betureen fissility and $654-6 \overline{6} 6$
Cladophlebis. 521, 522, 533, 534	relation of hedding to............ 649, 6i5\%-659
Cladophlebis Albertsii (Dunk.) Brongu 489	in Lake Superior region.......... $800-801,802$
Cladophtebis angulata Sap 518,521	causes and characters of 868-872
Cladophlebis argutidens Sap............... 596	Clearage aml fissility, definitiou and
Cladophlebis Browniana (Dunk.) Sewn...... 48ㄹ,	635
526, 530, 534	iu heterogeneous rocks.............. . 646 -60.4
Cladophlebis confusior Sap 526	relations between $654-656$
Clarlophlebis constricta Font 591	relations of other struetures to 656-661
Claduphlebis creuata Fout................. 521	relation of thrust faults to 659-600
Cladophlebis derelicta Sap 526	relations of thickness of strata to . . . 660-661
Cladophlebis distans Font 531	relations of stratigraphy to 668
Cladophlebis Dunkeri (Schimp.) Sew 482 ,	Clearage banding, examples of.......... 561-564
484, 526, 530, 534	microscopic section showing 564
Cladophlebis fissipennis Sap 527, 531	Cleavage plane, the beginning of 566-567
Cladophlebis Limai sap.................... 527	Clemeuts, J. M., work of.................. . 23
Cladophlebis longipeunis Sew.............. 482	Clepsysaurus penmsylvanicus, discovery
Cladophlebis microlepsina Sap 518	of remains of 147
Cladophlebis micromorpha Sap 518	Coal, statistics of production of.......... 52-54, 60
Cladophlehis minor Sap.................. . 518, 527	Coal fields of Marsland, Virginia, and Thest
Cladophlebis minutissima Sap 597	Virginia, geologic work in......... 1i-18
Claclophlebis multipartita sap 518	Coal fields of Ithorle Island, genlugie work
Cladophlelis obtusiloba Sap 518, 527, 591	in 14-15
Clarlophlebis parra Font................... 521	Coal fichls of eastern Trnnessee, geologic
Cladophlebis parvula Sap 518	work in 18-19, 20
Cladophlebis sinuatiloba Sap 518, 521, 527	Coal plants, work on....................... 21
Cladophle bis subegcadina Sap 527, 531	Cobalt oride, statistics of production of... 58, 60
Cladophlebis mululatiformis Sap.......... 518	Ceeluridx, characters of.................... 240
Claosaurus Marsh, description of remains	figures of remains of................. 258, 264
of 219-294	Ctelurus Marsh, description of remains of 155-156
size, geologic horizon, and associated	Celurus agilis Marsh, figures of remains of. 264
forms of................................. 224 structural differences between Pterope-	Celurus fragilis Marsh, figures of remains of \ldots................................... 258
15x and 224	Coke, statistics of production of........... 54
structural differences between Trachodon (Hadrosaurus) and............... 224	Colorado, allotments of money for geologic work in \qquad
Claosanrus agilis, figure of ilium of........ 223	allotment of money for topographic work
Claosaurus annectens Marsh, fignres of re-	in \qquad work on Leadville mining district of.
resturation of 392	geoloric work in..... 25-26, 29-30, 31, 32, 33, 37
aosauridx, claracters and geologic	chemical a nalyses niate of ores from... 42
rizun of........................... 203, 244	hydrographic work in................ 44,46
deseription of remains of 219-294	topographie work in.... 63, 65, 66, 68, 69, 70, 71
Claosauridæ, figures of remains of... 388-398.404	Colorado Chirgito, Arizona, fossil moods
Clark, F. W., work of....................... 42	from 499
Clark, William B., work of................. .	Comanche series 460, 4i0.472
New Jerser formations named by.... 479, 524 cited. \qquad	Compsognathms, description of restoration of 228-229
Clathropodium Morieri B. R............... 486	Compsognathus longipes Wagner, descrip-
Clathropteris............................. . . 521, 535	iion and resturation of....... 163, 228,408
Clathropteris sp. Sap...................... ` 518	Compsognathus and Hallopus, relations of. 229
Clay Marl of Nerr Jersey, claracter of..... 479	Compression joints, description of.......... 671
Clays, statisties of produetion of........... 55,60	Compsognathidar, characters of 240
Clearage, examples of differential........ 560-561	restoration of........................... 408
twofold and threefutd 564-566	Comstock, cited. 672
figures showing 565, 560	Comptoniolteris cercalina Sap-............ 527
across fault lines....................... . 566	Comptoniopteris dubia Sap................. 518

Dinosiuluria, Peneral acteptance of name for 237
eliaracters of ..e.. 238

Dinusamria and Belodontia, relatiouship
Dinosauria and Crocodilia, relationslip between............................... 2: 2•-2?
Dinosauria and It:llopoda, relationshil hetwern.................................

Dinosarian footprints on Comecticut
liver andstone, figure sh. Tring....
140

description of 151
Dinosaurs of North America, work ow..... 42 1:aper by O. C. Marsh on 133-414 diagram showing geologic horizons of.. 145
1)inosamrs, divisions of 143 grologic and gengraphic range of..... 143-145 Triassic 146-152, 248-25t Jurassie. 150-202, 256-358 Cretaceous.................... 203-226, 360-394 African, Asian, and Australian forms of 296 comparisons and restorations of 29:-237 relationship between birds and.......... 237 clatsificution of. 2:7-244 plates representiug remains of....... 245-414 figures of footprints of.................... 254
figures of European remains of : $118-41+$
Dioonites Brongniarti (Mant.) Sehenk 453
Dip and strike, relations of fanlts to......... 674
Diplodictymm 53..
Diplodocidxe, descriptions of 7.5-18n
characters of.............................. 241
figures of remains of 294-302, 322, 336
Diplodecus, descriptions of remains of... 175-180
Diplodocus longns Marsli, figure of skill of. 17
figure of dentary bone of 178
figures of remains of 291-302, 322, 393
Diracodon, lescription of 193
geologic horizou of 195
Diracodon laticeps Marsh, firures of re.
mains of........................... 316
Director of the Surver, field work by...... 37, 33
Dirt beds of the Purbeck, plants of 481.
$485,488,489,495$
Disbursements and accomnts, work of divi-
simu of 88-1: 80
District of Columbia: work ou are:il gevogy
of
plant-loaring beds of 52 :
Docmuents and stationery, work on........ 8.
Dodd, Mead \& Cu. , pamphlet on use of Gorermmental maps published ly......
Dee River, Temnessee, polished slickensides
sappearamer of folds with increstsed depthseen on.
rocks bent without macroscopic fracture
scen on..................................... 602
schistose dikes slow:ng structural dis. cordanceat.

727
Dogger of Portugal, geologic plate of 516 Dollo, L., use made of descruptions and figures of Ignamoton prepared ly... est-231
Dolonite, metasomatic alterations of....... 1990

Dougos, IEage.	Fenixetum Page.
Douglas, E. M. work of.................... 65. 66	Equisetum temme Sal..................... 518
Dracaua Bensterli Kucuig. 481, 483	Erhach, John, work of..................... i9
1rew, Frederick, cited...................... 4 ¢is	Etruswan Niecropolis at Marzabotto, «e carl
1tynaria.................................... 535	on tomb at......................... 505
Dryosamms, remains of species of......... 198-199	Encalyptus 534.539
characters of........................... 201	Eucalymus angusta Sap - 22, 531
Dryosamrns altus Marsh, size aud charar	Eucalyptus Chothati Sap 527
1:18-199	Eucalyptus Geinitzi Heer................... 531
figures of remains of............ 354, 402,404	Eucalçptus proto Geinitzi Sn\} 5
Drsptosaurida, geologic pusition and prale-	Euphorhia 530
ontologic affinities of............... 203	European dinosaurs, comparisons of with
Dryptnsauridax, characters uf............... 239	A meriran form
figures of remains of................ 264 -268	figures of remains of 40 - 114
Dryptosaurus (Lataps), localities of....... 203	Euskelesaurus Inxler, geologic horizon and
Dun, James, aid by........................ 6 6	paleontologic aftinities of........... 196
Dungenessquarrs, Portland, England, plant	Evans, Henry C., work of 83
remains from..................... 490	Ewing, J. . . , riterd 8 . 83
Dwight, W. B., cited....................... 835	Expenditures, detailed staterment of....... 90-130
Dying Glacier, Alaska, description of...... 427 changes to be exprected in............. 442-443	F.
Drstrophatus Cope, geologic horizon of.... 195	False bedding, occurrence of 559
Dystrophan riamala, discovery of re-	
mains of........................... 152	Farmer, I. A., work of it
E.	Faults, origin of'.......................... 6i2-674
Earth's rrust, zowes of..................... 589-603	figures of................................ 673
Echinollermata (Mesozoic) of the C'nitell	
t, J	related to 674-676
Eliturial divis	zone atfiecterl ly........................ 67t
Editurial divis:on, work of... - 79	stratigraphy its related to.............. 678
Educational Series of Lockis, work on 34, 35	Fault shp, character and canse of 645
Egan range of mountains, pre-Cambrian rocks of.............................. 822	Felch, 11. I., dinosanrian remains founl by................................... 165, 187
Eldridge, George II., work of …........... 23, 29	
Elk Garden coal field of Marylaud and Vir. giuia, work in.	production of cleavage by................. 6.5
Ells, R. Wr., citcd........................... . 7 .tit	metasomatic alterations of 689-690
Elmore, H. W., work of.................... 83	Felix, J ohannes, pateontologic work of 499
Emack. Mr., fossil creads foumd lis........ 503	, 533
Emerson, B. K.,.work of......................... 15 -16 cited............................... 6.57, 694, 826.829	Ferruginots chert, origin and character of \ldots.............................. 701 . 002,706
Eurery, statistics of production of. 56, 60	Fibrmus talc, statistics of production of..... 60
Emilia, Italy, plaut heds of......... 500. 501,503	eld work in pre-Canbrian rocks, pra
Emmons, E., cited............... 748, 751, 842, 843	methods of - .89-742
Emmons, S. F., work of 29-31.37	Financial statement - ${ }^{\text {a }}$
cited 719	Fissilits, development 11
Euglefield, Sir Henry C... fossil plants de-	(cross) definition of........................ 64t
Engraving and Pr:nting, work of Division of . \qquad	development in heterogencous rocks иf 1. 645-654
Eocene fanna of Maryland and Tirginia. work on.	figure showing cross aud parallel........ $65=2$ rotation of................................ . 652-653
Eolirion.................................. . 534, 536	relations between clearage and 654-656
Eolirion Insitanicum Sap................... 597	relation of belding to 656-659
Equiseta in the Jurassic of Portngal...... 590	(cross) figured......................... 657
Equiseta in the Lower Cretaceons of Portu-	(parallel) figured........................ 6.57
gal... 533	in Lake Superior region............... 803-805
Equisetites Burchardii Inuk........ 483, 527. 530	causes and character of 88-8it
Equisetites Lyelli (Mant.) Morr............. 483	Fissility and clearage, definition and causes
Equisetitcs Tokoramse Serr................ 48,	of'................................ 633-635
Eqıisetum.................................. 521	in heterogeneons rocks.............. 646 6-654
Equisetum deperdituun Sap 518	gradatiou between 65t-655
Equisctum lusitanicum Heer.............. 518	relations between 65t-656
Equisetumpseudo-hocreusesai............ 518	relations of otherstructures to....... 656 -661
Equisetum sp. Sap......................... 527	relation of thrust faults to 659-660
Equisetum striatulum S:11.................. 518	relatious of thickness of strata to.... 660-661

Pas.	Page
rles H., worls of. \quad if	
Fittor, William, citcd............. tit,	Fueotus sp. Iristow....................... t83
470, 475, 4i9, 479. 481, 455, 489. 490, 494	Fucls, statistics of proluction of. - $5-5.5$
Fittonia squamata Carr.................... taiz	
Fletcher, L. I'., work of...................... 66	G.
Flint, statistics of probluction of.......... 5*-59, mis	
Floras of the Lower 'retaceons of England and Ameriea compared............... tso	summary of primary triangulation exe-
Florida, alloment of money for geologic work in	logical inreer between the yeare 1882 aud $189+$ by
geologic work in 3, 3	framett, S.s. work of............... 62.6.6.6.6. 69
	Gardner, J. Starkie, paleontologic work of.. 481
	Gaspé Peninsula, pre Cambrian rocks of ... 810
'onditions of..................... 845-8.59	Ganlt, position of the............ 469, 479, 513, 52 4
paper ly	flora of the............. 480-182. 499, 514,53.0
Flowage amblasticity in the earth's crust, zonc: of . $591-601$	Gay. Head, Mass., ciaracter and geologic place of plant-bearing bels of 478,524
Fluorspar, statistics of production of....... 5i-60	Geanticlines and gensynclines, definitions of 607
Foersto, A. F., diagrant prepared ly........ . 569	(icology, work of Division of............... 14-37
hd, limit of uso of term.................. 625	Geikie Glacior, Alaska, deseription of.... 428,433
Folding, stratigraphic w-idential value of.. 580	Geikie, Sir Δ rehibald. cited. S010, 561, 733, 751
changes arcompauy-ing. 6:31	(ieneral Land ()flice, work performed for... 62
relations. between uncontormity and. 632-6i33	
in Lake Superior region, types of.... $800 \rightarrow$ al	fortheoming folos of 81, 82
obliteration of unconformity by 832	verle of purblication of................. 8 2
ids, inclined and overturned........... . $549-5.53$	determination of plan of distrihution of 82
vertical disappearance of............ . .53-556	(ieolugic Pranch, work of '....... 1 $\downarrow-61$
sverse 5 . 5 .3-554	© ieologic folios. report of progress in engrar-
parallel 599	ing of883-84
analysis of 60.6 -633	(icolngit work, allotments to............... 11
siss of.............................. 60. . 60.	Gemria, allutuents of money for geologic
simple . 664-6017	
fan-shaped 60, 60-60\%, 60,	allotment of money for topographe
compmsite . 615-6206	
normal . 613-615	19
alsnormal. 615-621	k on guld deposits of 21-22
canses modifying forms of $621-624$	topographic work in $62,65,68,60,71$
complex............................. 626 6-6;33	photograplic work ill 9
relations of thrust fanles to.......... oft-fit6	Geosrnclines and geanticlines. defiuitions of 6.7
in Lakc Superior region.............. \&u0-su1	(ierdine, T.G., work of 66
Folkestone heds, geologie place of 460.481	(irmanys. Wealden floma of'............... 481.48:2
Fontaine, W. M., work of................... 40.41	Gilbert, G. K., worla of....................... 25-27
citocl 472, 499, 503.510, 511, 513, 515, 539	aid br................................. 591
sotprints of dinosaurs on Triassic sand.	cited 818
one of the Commecticut Taller..... 146-	(iilcrest, W. د1., aid by 49
14i, 151, 254	(iill, De Lancey W'., work of 78
Forca. plant-hearing beds of. 5 . 3	(iindled Glarier, Alaska, description of... 446-448
Fortier, Sanuel, work of.................... 48	Girty., G. H., work ot 38
ossil furests of the Purbeck amd Wealden. 485	Glacier lay, Alaska, and its glariers, paper
Fossil plants of Appalachian coal fields, work on \qquad	by II. F. Reid on 415-461 description of general features of.... 423-425
Foster, citell \% $50^{\text {a }}$	islands of . 425 -426
racture of roc	inlets and glaciers of................ . t26-433 $^{\text {a }}$
of . 588-594	table slowing dimensions of glaciers at. 433
racture, limits in the carth's erust of zone	geologr of region of................. 433-438
of . $589-504$	recent geologie history of $438-440$
Fracture and flowage combinct. zone ot.. 601-803	fussil. uf' 433-434
France, Wralden flora of................. 481,482	sand and gravel deposits of........... 434-438
Fredericksburg, Va., plant-bearing beds near....................... 472, 473, 512. 523	recent geologic history of............. $438-440$ changes to be expected in glaciers of. $442 \cdot 445$
Frenelıpsis 534	animal life of........................... 451
Frenelopsis leptoclada Salı 59.	somdings, temperatures, and analrses
Frenclopsis orecidcntalis. Ileer.............. 527	of таters of 452-458
Front Ranre, Colorado, pre.Cambrian rocke	tidal observations at 4 + 58.459
of \qquad	methods of topographie survey at . . . 459-461

Hornblende, production of cleavage by $\quad 635$ Hornblende-gneiss, origin and character of. 706 Hornblende-schist, origin and character of $\ldots \ldots \ldots \ldots \ldots$........................... 703,706
Hoskins, L. M., acknowledgments to....... 589
cited.. 590 -
591, 592, 594, 637, 638, 641, 643, 648, 649, 654
paper on flow and fracture of rocks by. 845-874
Hugh Miller Glacier, Alaska, description
of 429, 430, 433
changes to be expected in................ 442
Hunter, H. Chadwick, work of............... 78
Hulke, J. W., dinosaurian structure determined by. \qquad Hypsilophodon restored by
Huncary Liassic flora of
Huxley, T. H., restoration of Compsognathus made by \qquad 229
dinosaurian structure determined by .. 230 cited.
Hyde, Geo. E., work of.
Hydrographic work in Colorado............. 25-26
Hydrographr, work of Division of 43-49
Hymenophyllites.............................. 520
Hymenophyllites ambiguus Sap............. 518
Hymenophyllites crenilobus Sap 518
Hymenophyllites gracilis Sap 518
Hymenophyllites tenellinervis Sap.......... 518
Hyperodapedon
Hypsilophodon Foxii Huxley, description of restoration of....................... . . 23
restoration of............................ 230, 412
Hypsilophodon Huxlcy, characters of 199, 226 restoration of 199,412 Laosaurus consors allied to 202
Hypsilophodontidæ, characters of 244 restoration of. 412
1.

Ichthyosaurus campylodon Cap.............
Idaho, allotment of money for geologic work in
allotment of moner for topographic work in.

11
geologic work in 14, 23, 13
hydrographic work in 44, 47
topographic work in...............66, 68, 70,71
Idice River, Italy, plant remains from. 501, 502, 510
Igneous rocks, cleavage in................. 635,642
deformation of 709
metamorphisnı of......................... 709-716
Iguanodon, geologic horizon and paleon-
tologic allies of.........................
Iguanodon Bernissartensis Boulenger, de-
scription of restoration of........ 230-231
outline restoration of 414
Iguanodontidæ, American representatives of
f........
............................. 24
restoration of 414
Illinois, allotments of money for geologic work in
geoloric work in
Illustrations, work of Division of.......... 78-79
India, Jurassic beds of....................... 482,484

Indiana, geologic work in Page.
Indian Territory, paleontologic work in.... 27
surveys in.................................. . 72-77
pre-Cambrian rocks of.................... 815
Infralias of Portugal, plant remains from... 517,
518-520
Infravalanginian of Portugal, plant-bearing deposits of.

523
Infinsorial earth, statistics of production of:. 59, 60
Injection, metamorphism of rocks by....... 686
rocks modified by 700
lodine, statistics of production of........... 57
lowa, geologic work in 24
Ipswich beds of Australia, plant remains from

530
Iron and steel, statistics of prodnction of. 50-51,59 Iron-bearing formations of the Lake Supe-
rior region, geologic work on........ 23-24
Iron ore serics of the Potomac formation... 47
Irring, K. D., cited 716, 760, 761
Island series of the Potomac formation 473,
$515,523,524,531,532,533$
Isle of Portland, fossil plant remains from. 470 , $484,487,492,495$
Isle of Wight, fossil plant remains from... 470 , 477, 478, 487, 505
fossil forests of the. 491, 492, 493,496
geological map and section of the...... 480,
Pl. CITIII
Isoetes.. 533
Isoetes Choffati Sap............................. 527
Italy, Cretaceous beds of......... $500,501,503,510$

J.

Jacknon, Washington County, N. Y., figure showing differential cleavage in lodge at.

561
Jamaica, Vt., section at 558
James River, plant-bearing berls of........ 473, 511
James River series of the Potomac forma-
tion, character and fossils of......... 472,
$473,480,481,482,522,524,530,531$
Japan, Mesozoic flora of.............. 482, 484, 530
Jannettaz, E., citel on cleavage 565
Jaspilite, origin and character of..... 701-702, 706
Jeanpaulia 535
Jenkins, Dr., fossil plants presented by..... 503
Jeuney, W. P., aid by 41
Jennings, J. E., work of 6
Johns Hopkins Glacier, Alaska, description of

432, 433
Johnson, Charles W., aid by 40
Johnson, W.D., work of 66
Johnston, Christopher, remains of Astro-
don named by......................... 164
Joints, origın of. 668-671
zone affected by............................ 672
relations of stratigraphy to.............. 672
Jones, Charles C., work of..................... 79
Jukes and Geikie, cited....................... $\quad 721$
Jungermannites vetustior Sap............... 527
Jura Mountains, polished slickensides in.- 600
fan folds in . 605-607
Jurassic, flora of the................. 482, 484, 530

INDEX

	Pacre
Jurassic of Portugal, fossil plants from.... 516, 517, 518 (table), 526-229	
(snpposed) of Virgini	1
of Japan, plants from	-
$J u r a s s i c ~ d i n o s a u r s, ~ d e s e r i p t i o n s ~ o f ~ r e m a i n s ~$of ${ }^{\text {a }}$. 152-202	
tigures of remains uf........ . 256-358, 396-406	
Jurassic fossils, study of 39
urassic plants extendin den	into the Weal- $482,484$

K.

Kaigln, J. F., work of.
Kausas, allotmeat of moner for gcologic work in
geologic work in.

\qquad
hydrographie work in .
$44,45.47$
Cheyenne sandstone of 487
Daliota group of
Keith, drthur, work of 19, 20
cited $640,839,840$
Kenper of Lunz, Austria, American equir. alent of .
Fieweenawan series of rocks of the Lake
Superior region, description of... 794-796
unconformity betwepn Cambrian and .. 807
unconformity between Upper Huronian and
Kımmerilge clays, geologic equivalents of 484,522
Kimmeridgian (France), plants of.
(Portugal), geologic equivalents of $517,530,530$
King, Clarence, cited
$748,749,847$
Kingbarrow quarry, Portland, plant remains from........................... . 490,495
Knowlton, F. H., work of 41-42 remains of buried Alaskan trees identified by
fossil plants identified $\mathrm{b}_{5} \ldots . .494,495,496,499$
Knoxrille (California) beds, studies of fos. sils from
Kome beds of Greenland, flora of the...... 481,
Kootanie beds, character, localities, and fossils of. $469,470,472,480,481,482,530-532$
Krapf, drawing of type specimen of Compsognathus longipes furnished by...
Kübel, S. J., work of.
............................ 83

L.

Labrosauridæ, characters of
of
+

Labrosaurus ferox Marsh, figures of remains of ...
Labrosaturus fragilis Marsh, figures of renadins of.
Labrosaurns sulentus Marsh, 270 eris pulchella Heer
Lacouten 527 plants, wurk on uperior region, allotment for geologie work in
geologic work in 11
geology of
780-807

Lake Superior region, Page
ake Superior region, A rchean of 781-783
Lower Huroman of. $883-787$
Upper Huromian of........................ $\overline{\text { isi-792 }}$
alteration of Lower and Upler Huronian
in . 792-79-

Keweenawan of $794-794$
Cambrian of 796
correlation of formations $111 . . .$. 796-799
geologic principles illustrated in..... $799-807$
Land Oftice, work performed for............. 62
Lakes, Arthur, dinosaurian remains found by..
Laosauridie, descriptions of characters of genera of. 198-199

cliaracters of
243
figures of remains of 354, 358. 402
Laosaurus Marsh, characters of species of. 199
characters of 201
Laosaurus altns Marsh, remains of.......... 198
Laosaurus celer Marsh, characters of 199
Laosauris consors Marsh, size and genlogir horizon ot.
description of restoration of 202
figure of left hind leg of 233
figures of remains of 354, 402
restoration of 358
Laosaurus gracilis Marsh, characters of... 199of cold deposits of32-33
La Penotière, F. J., aid by. 40
Lapparent, A., cited 469.500,503Lamrentian district (the Original), limits
and rocks of 766-771
correlation of rocks of 769-70
Laurophyllum. 539
Laurus. $53+539$
Laurus attennata Sap 527
Laurus pawocretacea Sap 527
Laurus notandia Sap 527
Lawson, Andrew C., work of 36Loa, Isaac, dinosaurian remains deseribed
and figured by 147
Lead, statistics of production ofLeadville mining district, Colorado, geologic
work in - 14, 29-30,31
chemical analyses made of ores from. 42LeouminositesLeguminosites infracretacicus sap
Leidy, Joseph, dinosaurian remains de.scribed and figured by 147, 224, 225
Lelli, Ercole, fossil drawn and engravedliy. 502Lenox, Mass., overturned anticlne at - 549-550, 552Leverptt, Frank, work of 24-25
Lias, thora of the...... 482, 484,516-520, 530, 535. 538
Library, work of the . 86-88
Licber, cited. 748,754 , 542
Lindgren, Waldemar, work of 35-36
Lippincott, J. B., work of......................... . . . 46
Liriodendropsis.................................... . . 540
Liriodendropsis lacerata Sap. sp 540,542
Liriodendropsis smuplex Newb 540, 542
Liriodendropsis simplex angustifolia
Newb.
. 540,542

Liriodendronsis simplex constricta Hollick Page Lisbon, Menozoic deposits near............... 515 Lithological claracter of formations, struetural value of $736-737$
Lijugstedt, O. A., work of. 80
Logan, cited. 775, 776
Logan and Murray, cited..................... 776,778
Lonchopteris lusitanica sap.................. 597
Long Island. Cretaceous plant-hearing beds of
of 473, 523.524
Louisiana, paleontologie work in............. 27-28
Lovell, W. H., worlk of.
Lower Cretaceons (America), plauts of..... 513 , $530,531,532,533$
(Eugland), plants of 482
(Italy), plants of 500,501,503
(Portugal). plants of.................. 513 526-530
Lotrer Greensand, geologic equivalents and plants of $\ldots . .469,474,481,482,487,499,523$
Lower Huronian rocks of the Lake Superior region, character and thickness of. 783-787 alterations of. .

792-794
Lower Marquette series of Michigan, clos ing of fractures in.

602
Laccomb Chine, Isle of Wight, plants from.
Lucina pomum
Lumz Austria Teuper beds of......................
Linz, Austria, Keuper beds of. ...
Lycopodites.
Lreopodites Franclieti Sap..................
Lycopodites gracillimus
Lycopodites Limai Sap.
Lydekker, Richard, sauropod described be
Lrunc Regis, England, plants from M.

MeCliesney, John D., Work of.
abstracts of disbursements made by . . 90-107
McCoril, J. L., work of
86
McGee, W. J., cited....................... . . 472, 473, 499
McKee, R. H., work of.......................... . . 66
McKinncy, R.C.. work of........................ 66
Macrotæniopteris 521
Mactrida (Tertiary) monograph prepared on.
River, Montana, figure of exposure
of gneissoid granite on
 Magnolia.
Magnolia Delgadoi Sap............................
Maine, allotment of money for topograplic work in.

Malur of Portncal, plants of 516
516
Manganes ${ }^{2}$, statistics of production of 51, 60
Manlattan formation, character of....... 835, 836
Manning, Vau H., work of...................... 65, 77
Mantell, (idenn, cited............................ 474 ,
$475,476,477,478,481,488,492,493,494$
Mautellia .. 009
Mantorani. Pio, cited................................ 500
Maps (geologic), work on 80
completed folios of . 81
fortlicoming folios of........................ . . 81, 82
scale of publication of....................... 82
determination of plan of distribution of. 82

Maps (topographic), mode of preparation of mamseript of 82-83
Maratia minor אaŋ..................................... 527
Marble, origin and cliaracter of.......... . 703-704
Marchantites Zeilleri sew. 481-483
Margeric (de) and Hein, citerl 604.610
Marion, A. F., cited 540
Mariposa slates, California, determiration
of age of.
of age of.. 35
...... 56, 60
Marquetto iron district of Lake Superior
region, geologic work in............... 23-24
abnormal synclinorimu of................ 625
rocks of 784, 789
Marr, J. E., cited.. . . 569
Marshall, I:. B., work of. 66
Marsh, (). C., work of 42
paper on the dinosaurs of Nurtle Amer-
ica by 133-414
aid bs .. 512
Marthas Vineyard, Mass., geologic work at. 39
Cretaceous plant-bearing herls of 4i3,
$475,523,524$
Marvine, A. R., cited............................. . 748, 749
Maryland, allotments of noney for work in. 11 allotment of moner for topograplic work in 13
geologic work in 17, 40
work on Eocene fauna of 22
work on fossil flora of.... 41
hydrographic work in........ 45, 49
topographic work in...................... . 64. 68, 69
fossil cycads of............................ 484, 503
Potomac lieds of -............................... . . 513
pre-Cambrian rocks of 838
Marzabotto, Italy, fossil cycad on tomb at.- 505
Mashing, metamorphism of rocks lyy 094-698
rocks modified by 704
Massachusetts, allotments of money for geologic work in 1 .
geologic work in 15-16
trappean rocks discovered and mapped
in ... 15
work on geology of road-building stones of15

Loser Cretaceous of 513
pre-Cambrian rocks of................... . . 829-833
Massei, Count Francesco, ail by 501, 504,510 Matawan formation. New Jersey equivalent
of 479
Mather, W. W., cited. $560,748,750$
Matonidiun Goepperti (Ett.) Schenk. 483, 527, 530
Matta. Portngal, plant-bearing beds uear ... 523
Maynard, Washburn (Lieutenant-Com-
mander U. S. S. Pinta), aid by..... 422
Meade, Elwood, aid by........................... . . . 49
Medicine Bow Mountains, pre-Cambrian
rocks of 817-818
Meradactylus polyzelus, discovery of re-
nains of.................................. 147
Megalosauridæ, charactors of 239
Meleagris galliparo Linn., figures of bones
of .. 360
Menrlon (Termont) series of rocks. $8 \geq \mathfrak{\imath}-828$
Menispermites

Menispermites cercidifolius Sap........... 527, 539
Menispermites virginiensis Font. 539
Menominee district of Michigan, rocks of.. 784
Mercur mining district, Utah, geologic work in
\qquad
chemical analyses made of ores from... 42
Meredith, Harry W., work of:.................. 86
Merriam, J. C., work of.......................... 37
Merriam, W. N., work of......................... 23
Merrill, F. J. H., cited 834-836
Metals, statistics of production of....... 50-52,59
Mesozoic of Portugal, flora of............. . 510-542
correlation table of............................. 525
Mesozoic dicotyledons............................. 511
Mesozoic Echinodermata of tho United States, work on
Mesozoic fossils, examinations of 39
Metallic paint, statistics of production of.. 57
Metamorphic igneous rocks, enumeration of .
relations of stratigraphy to 714-716
comparison of sedimentary rocks with 710-714
Metamorphic sedimentary rocks, enumera-
tion and descriptions of 698-707
relations of strati
comparison of metamorphic igneous rocks with.
Metamorphism, processes of................ 709-710
Metamorphism of igneous rocks.......... . 709-716
Metamorphism of sedimentary rocks, char-
acter and causes of 683
processes of.................................. . . 683-698
consolidation as a process of............ 684
welding as a process of. 684
cementation as a process of
684-686
injection as a process of.................... 68
ecinentation and injection as a process

$$
\text { of . } 686-688
$$

metasomatism as a process of........ 689-694
mashing as a process of................. 695-698
Metasomatism, metamorphism of rocks
by.
689-694
rocks modified by....................... . . $700-704$
Mcyer, C. J. A., cited. 474, 476, 478
Meyer, H. von, dinosaurs first classified by. 237
Mica, statistics of production of.............. 58, 60
Mica-gneiss, origin and character of........ 706
Mica-schist, origin and character of...... 705-706
Mica-slate, origin and character of.......... 705
Michigamme iron district of Lake Superior
region, geologic work in.............. . 23-24
Microdictyon Dunkeri Schenk............... 483
Microdietyon parvulum Sap 518
Microlepia plnripartita Sap..................... 527
Middle Potomac, plants of..................... 539
Mills, F.J., aid by
Millstones, statistics ot production of...... 56,60
Minchin's Statics, cited
Mineral pigments, statistics of productions
of \ldots. 57-58,60
Mineral Rcsources, work of Division of ... 49-61
Mineral waters, statistics of production of. . 59,60
Minmesota, allotment of mones for topographic work in.

Minnesota, lydrographic work in..........
topographic work in64, 65, 68, 69
Mississiplui, Tertiary fossils collected in ... 39-40
Mississippi, Tuscaloosa formation of 513
Mississippi region, geologic worl in 23-28 Mississipli Valley, pre-Cambrian rocks

$$
\text { of . } 813-815
$$

Missouri, pre-Cambrian rocks of 814
Mochlodon Bunzel. paleontologic allies of .. 226
Moletein, Moravia, plants of.................. 514
Möllhausen, Balduin, cited 499
Monoclonius Cope, characters of 217
Monocotyledons (tossil), of Portugal. 520, 533, 534
Monsanto, Portugal, plant-bearing berls at . 523
Montana, allotment of money for geologic work in11
geologic work in 28
hydrographic work in 47
Kootanie of 481
pre-Cambrian rocks of 818-820
Monti, Giuseppe, cited 501, 502, 509

Moravia, Cenomanian flora of $\ldots .512,514,531,532$

$$
\text { Wealden tlora of. 481, 482, } 530
$$

Morosauridæ, descriptions of............... 181-183
characters of.................................. 241
figures of remains of. 282, 304-322
Morosaurus, discovery of remains of........ 164
descriptions of 181-183
Morosaurus agilis Marsh, figures of remains
of
304, 318
Morosanrus grandis Marsli, figure of sternal plate of.179

figuro of vertobra of
181
figures of remains of......................... . 282 ,
302-308, 312, 314, 320-322
Morosaurus lentus Marsh, figure of neural
cavity in sacrum of...................... 182
figure of pelvis of............................ 235
figures of remains of..................... . . 308-318
Morosaurus robustus Marsh, figures of re-
mains of.
314
Morris, John, fossil plants identified by.... 515
Morsell, W. F., work of........................... 86
Mount Greylock, Mass., microscopic section showing fold giving riso to cleavage in sericite schist at...................... 5
normal anticlinorium of.......................... 625
section across................................. 831
Mount Holly (Vermont) serics of rocks. . 827-828 Mount Fernon series of the Potomac forma-
tion 473, 523, 530-533, 538, 539
Mount Washington, Mass., normal anticlinorinm of . 625
cross section ot.................................. 831
Muir Glacier, Alaska, description of......... 421,
$422,427,433,435-436$
recent changes in......................... . 440-442
changes to be expected in................. 443
request for photographs of............. 444-445
velocity of. 445-446
rate of melting ot surface of. 450
Murlin, A. E., work of............................ 64
Munroc, C. E., aid by............................... 42
Munroe, Hersey, work of........................ 6
Murchison, Roderick, cited..................... 476
Myrica

rage
Myrica brookensis Fout. 539
Myrica lacera Sap 527
Marica reriscnda Sap. 527
Myrsiuc 534
Myrsine borcalis Heer 534
539
Myrsinophyllum 534, 539
Myrsinophyllum reriseudum Sap 528, 539
Myrsinophyllum vennlosum Sap. 528

N.

Nageiopsis obtusifolia Font. 531
Nageiopsis ovata Font ...531
Nageiopsis zauoides Font531
Nazosauridie, descriptions of remains ofspecics of199-201
characters of 244
Nauosaurus Marsh, characters of 201, 202
Nauosaurns agilis Marsh, description ofremains of199-201
figures of iliun and deutary bone of. 00
Nanosauras rex Marsh, figures of feumr of.. 200
size aud gcologic horizon of $200-2$
Narragansett coal field of Rhode Island
geologic work in14-15
Nathorst, A. G., fossil plants described andfigured by 484, 535,
Nathorstia raldensis Sew 483$484,535,536$
National Museum, acknowledgments to 8
Natural gas, statistics of production of 60Nebraska, allotment of money for topo-graphic work in.
13
hydrographic work in 44, 47
topographic work in $62,64,65,68,69,71$
Dakota group of. 512
481,
Neocomian flora of various countries

Noocomian formation, positiou of 469,513
Neo-Jnrassic of Portugal.469, 513
Neuropteridium lacerum Sap 518
Nemropteridium spinulosum Sap 528
Nenroptcridium torresianum Sap 528
Neuropteridinu venulosuu Sap. 518
Nevada, geologic work iu 37
hydrographic work in47
New Ashford, Mass., figure47
556
Newherry J S dinosaurian remains found
by... 152
ork fossil plants by

\qquad
470, 539-540

New Brunswick, Canada, pre-Cambrian rocks of . 810-811
Newell, F. H., work of. 44-45, 49
New England region, gcologic work in 14-16Newer Potomac, geologic place and plantremains of....................... 479, 524,539
Newfoundlaud, pre-Cambrian rocks of. ... 812-813
New Jersey, allotments of money for geo-logic work in.
\qquad

$$
\begin{aligned}
& \text { logic work in... } 11 \\
& \text { geologic work in................ } 40
\end{aligned}
$$

$$
\text { topographe work in } 68
$$Cretaceous clays of..

\qquad
rage.
New York, allotment of moner fur geo logic work in 11
allotment of money for topographic work in. 13
geologic work in 15. 16, 10
Lower Cretaccous of 513
pre-Cambrian rocks is 834-836
New York (eastern) and Green Monntain region, structural details of 513-570
Nerr Zealand, II ealden flora of 481, 482
Nichols, H. Hobart, work of 78
Nicol, William, work on fossil plants by.... 499
Niedcrschoena, Ceuomanian Hora of 481,
482, 512, 514
Nodosanridx, characters and geologic hori-
zoll of 203, 243
description of remains of 225
Nodosaurus Marsh, description of remains of 225
Nodosaurns textilis Marsh, figurcs of re- mains of 394
Nonfossiliferous rocks, structural work in 734-73
folk Island pine (Araucaria), structure
of fussil wood compared with struc.ture of492, 494
Normal (or grarity) fault, figure of 673
North Carolina, allotments of money for ceologic work in
geologic work in. 19, 20, 4011work on gold areas of
hydrographic work in$21-22$
45
tin ores of. $\begin{array}{r}45 \\ 52 \\ \hline\end{array}$
topographic work in 71
photographic work in. 79
plant remains from. 87,499
plants of coal field of 499
North Dakota, allotment of money for topo- graphic workiu.13
hydrographic work in 45, 48
topographic work in............ 64, 65, 68, 69, 71North Range of Baraboo, Wis., curved fis-sility seen in.653
Nova Scotia, pre-Cambrian rocks of 811-812
O.
Ocher, statistics of production of58
Ococe series of Tenncssee and Alabama
characters of. f. $840-842$
O'Hare, Daniel P', work and resignation ot 78
Ohm, F. C., work of7
Oilstoues, statistics of productiou of 56, 60
Oklahoma, hydrographic work in. 45
Older Mesozoic of Tirginia, plants of 499
Older Potomac, plauts of. 539
Oleandridinm teuerum Sap 528
Omosaurns armatus, geologic horizon of... 196
Omosaurus aud Stegosaurus, probable iden tity of. 229
Ouychiopsis 522
Onychiopsis elongata (Geyl.) Iok 433, 484
Onychiopsis Mantelli (Brongn.) Sew 483

Page.
Owlite, flora of the 482, 484, 515-520, 530-532, 535 Oporto, Mesozoie deposits of................. 515 Oquirrh Mountains, Ctah, geologic work in. 31
Oregon, allotment of money for geologic work in
allotment of money for topographic work in hydrographic work in.................... 44, 48 topographic work in 63, 66, 68, 71 Original Huromian district and its northern extension, geology of 7t5-is0
Original Laurentian district, limits and roeks of
correlation of rocks of 769-770
Ornithopoda, characters o 143
comparison with Stegosauria of. 194
description of typical remains of210eliaractury of crenera of
distribution of 226201-202
characters of 243
-244
fitmilies and wencra of
Ornithomimidx, characters and geologic
lorizon of. $3-204,240$
figures of remains of 360
Ornithomimus, eharacters of 204
Ornithomimus grandis Marsh, characters of 206
Ornithomimns minutus, characters of. 206
Ornithominus velox Marsl, deseription ofremains of$204-206$
figures of remains of 360204-206Ornithoscelida, a name proposed by Huxleyfor the dinosaurs.237prevaration of paper on18
Orogenie morements, obliteration of wri-
deuce of unconformity by 731, 732
Osmunda retinemda Sap.... 528
Ostrea piseudo-a fricana Choft 514
Otozamites. 521
Otozamites angustifolins Heer 515
()tozamites Munde Morr. sp 515, 518
Otozamites Rilbeiroanus Heer 518
Otozamites Terguemi Sap, ? 518
254
Ottawa River, disappearance of folds withinereased depth seen ou601
Orerturned folds, figures of...... 550, 551, 552, 553
Owen, Richard, samropod named by 185
Ozocerite, statistics of production of 60
Ozzano, Italy. fossils found near. 501, 504-505, 510
P.Pacific region, geologic work in.... 34-3734-37
Pacific section of topograply, work of.. 62, 66
Padriono, Portugal, plant beds of 524
Pagiophyllmm 520, 521
Pagiophyllum eirinicum Sap 519
Pagiophyllum Combramm Heer 519
Pagiophyllum Heeriauum Sap 519, 528
Pagiophyllum liasinum Sap. 519
Pagiophylhm minus Sap 519
Pagiophyllum peremrinum (L, and H.) Heer. 519,
521, 521
521, 521
Page.
Palrocyparis flexuosa Sap 519, 528
Palrocypari luvitauica sa
Palæocyparis lusitanica Sal 519
Palacocsparis obseura sap. 525
Palacocyparis retustior Sap 519
Pala oleris 534
Palaolenis bicornutal Sap 528
Palaolepis emarginata Sap 528
Palroscincus Leidy, geologic horizon and paleontologie aftinities of 195
Paleoscincus costatus, remains of $\because 25$
Palieoseincus latus Marsh, remains of 295
figures of remains of 394
laleobotany, work on compendium of... 41
Palcontologic work, allotments to 12
in Appalachian coal fields 21
Palcontology, work of Division of 37-42
Paleozoic fossils, work on 38
Pakeozoie plants, work ou 21
Palissya 521
Palissya Bramii Endl 519, 521
Palissya lusitanica Sap 519
Parallel cleavage, character and canse of 613
Parallel fissility figured 657
Paul, E. G., work of 34
Payne, Rnbert d., work of 8:3
Pecopteridua 53.
Pecopteris 521,522
Pecopteris aentiloba sap 519
Pecopteris Choflatiana Heer 538
Pecopteris dilacerata Sap 52s
Pecopteris lispersa Sap 528
Peronteris mimitula Sap 528
Pecoptcris obliquinervis Sap. 519
Pecopteris stricta Sap 519,521
Pecopteris strictinerris Font 521
Pennsylvania, pre-Cambrian rocks of...... 837-838
allotment of money for topographicwork in13
geologic work in. 18
topographie work in 62, 64, 68, 69
Penokee series of rocks of the Lake supe
rior region, formations of 61
Peurose, I. A. F., work of 33
Perkins, E. T., work of 66
Persia, Oolite of 1. 332
Peters, W. J. Irurk of 0.5 .77
Petersburg, N. Y., figure showing threefoldcleavage foliation in phyllite at 566
Petrographic laboratory, work of 3t-35
Petroleum, statistics of production of.... 54-55. 60
Peucedanites primordialis sap 528
Phillips, Johu, cited. $500,515,634$
Phlebomeris? faleiformis Sap 528
Phlebomeris spectanda Sal' 528
Phlebomeris Wilkommi sap 528
Phosphate deposits of Temessee, worl on.. 19-20
Plosphate rock, statistics of production of. 56, 60
Plotographic lahoratory, work of60
79
Pleyllauthus 536
Plyllites inflexiuervis Sap. 528
Plyclites problematicus Sal 528
Plyllites triplinerris Sap 598
Phyllocladus heterophylla Font 531
Plicllopteris acutifolia sell 483
Palrocyparis P'iedmont Plateau of Maryland,structure of. 838

Page.Pro-Cambrian rocks, criteria of stratigraplyof . 586-587
bedding of 716-720
practical methods of fielel work in 739-742
nistorical geology of 743-843
of Original Lanrentian district. 760-771
of the Adirondack district, elaraeter 771-773
of Canata 809-813
of the Black Hills 813-814
of Missouri 814
of Westeru Cordilleras 815-826
of Montana 818-821
of British Columbia 820
of the Grand Canyon of tho Colorado. . 825
of southeasteru Now Yor 834-836
of New Jersey 836-837
of Pennsylvania 837-838
of Maryland 838
of the Sonthern Appalachians 839-
differences between post-Cambrian
rocks and 584-586
Preeious stones, statistics of production of. 58, 60Predentata, definition of.143
suhorders cmbraced in 186
descriptions of forms of 186-202
descriptions of remains of 206-225
characters of 228,242
figures of remains of. $330-358,362-406,410$Pressure as related to solidity and to liqne-faction
$847-848$
500 500Priabona, Italr, rocks of
解
paleontologie affinities of. 195Priconoton crassus Marsh, figures of re
mains of.. 332
Primary triangulation executed loy the
United States Geological Survey
from 1882 to 1894, summary of.... 875-88
instruments used in 878, 879
expense of 880
degree of aceuracy of 880-881
consideration of by districts and
State 881-885
Prince Edward Island, fossil cyead from ... 487
Proangiosperms............... 513, 520,533, 534
Promontory Ridge, Utal, pre-Cambrian487
4,536
roeks of.. roer 821-822
work of...
Proterphyllum 534,539
Protearphyllnm reniforme Font 531
538, 539, Pl. CVI, figs. 8, 9
Proteophyllum 534, 539
Preteophyllum daphnoides Sap 528
Proteophyilum demersum Sap 528
Protcophyllum dissectnm Sap... 528
Proteophyllum leucospermoides Sap 528
Proteophyllum oblongatum Sap 528
Proteoplyyllnm oxyacanthæmorphum Sap. 528
Proteophyllun truncatum Sap 528
Protococcus niralis in Alaskan waters. 451
Protolemna. 515
Protophyllum 534, 539
Protopteris Witteana Schenk 483
Protorlipis 515, 534, 535, 539
Protorhipis asarifolia Zigno. 535

Protorhipis Buchii 535, 536, Pl. CTI, fig. Protorhipis Cloffati Sal 536, 538, 539, Pl. CTVI, figs. 2, 3
Protorhipis cordata INeer.

\qquad
536, M CTI 位
Protorhipis crenata Aath....... 530, M. CYI, hig. 4
I'rotorhipis integrifola Nath .. 536, Il. CVI, fig. 5
Protorhipis reniformis Heer 536
Pteridoleimma lacerum Sap. 519
Pteridoleimma phycomorpha Sap 528
Pteridolcimma residonum Sap. 519
Pteridoleimma spoliatum Sap 528
Pteridolcimma triparitum Sap 528
Pterocera incerta d'Orh 514
Pteropelyx, structural differences betweon Claosaurus and 224
Ptoronhyllum 521
Pterophyllum schaumburgense Dunk. 483
Inhications received and dist ributedduring tho year 85, 86
Pullications sold during the year. 86
Pullication Branch, work of 78-84
Pumpelly, Raplaael, cited. $629,630,830,831,833$
Putnam, G. R., cited 848Purbeck of Eucland reoloric placo and
fossils of 469,530
Pyrites, statistics of production of. 57, 60
Q.
Quader beds of Germany, fossil plants of... 512 512Quartz lenses in bedding planes of sericiteschist, origin of556-558
Quartzite, origin and character of........ 699-70
(schistose), oririn and character of 70.4
Quartz-porplyry'(mashed), thin section of. 595-596Quartz-schist, origin and character of...... 70Queen Charlotte Islands, Cretaceous strataof ….................................... 46
Quicksilver, statistics of production of...... 51,5 59bearing berls at.
Quinta-da-Fonte-Nova, Portugal; plant.523

R.

Ransome, F. L., work of 37
Rappahannock River, plant beds on........ 511 liappahannock series of the I'otomae formation 473, 481, 482, 523, 524, 530, 53 Raritan clays, geologic equiralents of 512, 513 Raritan formation, plauts of 470 ,

480, 524, 531, 532, 53
Raritan River, flora of heds on 523, 524 Ravenalospermum incertissimum Sap...... 528 Red Cliff, Isle of Wight. Wealden strata of. 487 Reed, W. H., dinosaurian remains discov. ered hy. \qquad
Reid. Clement, cited174
Reid, Harry Fielding, paper on Alaskanglaciers by 415-461
Renault, B., cited............................... 486, 499Rendu Glacier, Alaska, description of 431, 433Reno River, Italy, geologis exposures exam-ined at470
Renshawe, J. H., work of 64
Reyer, Eduard, cited 615
Thetic formation, flom of the
$484,516.517,530,538$

San Martino, Italy, rocks of................. 500

San Sebastiāo, Portugal, plant berls of ... 523, 530
Ihizocaulon elongatum sap 528
Rhizocaulon vetus Sap. 519, 5.8
Rhode Island, geologic work it 14-15
Ribeiro, Carlos, cited 516
Richmond coal field, fossilsuf 499
Richmond, Va., fossils foumd near 499
Ridgway, John L.., work of
Riga schist of Massachusetts, figure showing transverse folds ofRio Centonara, Italy, fossil plant beds.... 504,510
Rio della Cavaliora, Italy, fossil bets on... 510
Rio della Cavaliera, Italy, fossil bets on 510
Rio secco, Arizona, fussils from 499
Ripple-marks, figures of 719, 720, 721
determination of stratiglaphy by.... 720-72Nizer, H. C., Work of...84
Robbins, W. S. work of34
Robertson, A., citerl on the Wealden... 476
Rocky Mountain region, geologic work in..
Rocky Mountain section of topography,work of62, 65-66
Rogers, W. B., cited................. 472, 621-622, 748Roofing slates of New Tork and Vermont,
reologic wappiner of
goologic
750
Rominger, eited 39
47Ross, Charles A., work of
Roth, cited. 751
Roughland, Isto of TVight, beds of. 493
Rufford, P., fissils collected ly. 481
Ruffordia522
Rutfordia Gopplerti (Dnnk.) Sew.... 483, 528,53
Ruffordia Gopperti latifolia Sew
Rupert, Fcrmont, cleavage banding at.......483
563
Russell, I. C., cited on geology of regionabout Glacier Bay. Alaska....... 43434,435

 cited on decrease in size of Alaskan glaciers
 Rnssia, Neocomian flora of 481, 482, 530
Rutile, statistics of production of 60 60Ryon, A. M., work of .47

S.
Sagenopteris Mantelli (Dunk.) Schenk..... 48 St. Gothard massif, ehange from normal to abnormal folds inabnormal folds in
cross-section through.
structure of................................... pressuro as affecting sizo of .pressuro as aftecting sizo of
Salem, Washington Connty, N. T., diagram slowing slip, cleaviage at
tro-fold cleavare in ledge at 561
Saliciphyllım565
Salix 534, 532
Salix assimilis Sap. 529, 532
Salix infracretacica Sap 529
Salix proterefolia Lx 532
Salix retincuda Sap 529
Salt, statistics of production of 56-57, 60
Salto di Montose, Italy, rocks of 500
Sandown, Isle of Wight, rocks of 487

Sanson, Joseph, aid by 485,490
Santagata, Italy, rocks of 510
Sapindophyllum 523,533
Sapindophyllum brevior Sap.................. 529
Sapindophyllum subapiculatum Sap....... 529
Saporta, Marquis (f., aid by 471,
$513,515,516,517,521,523,534,535,536,540$ Sapper, Carl, cited825

Sassafras cretaceum heterolobum Font..... 532 Sassafras protophylhm Sap 529, 532
Sauropoda, definition of......................... 143
descriptions of 164-186
names and claracters of families of.. 165-166
distribution of................................... 18
eomparison of European and Amcrican
forms of.
185-186
cliaracters of 228,241
families and genera of.................. 241-242
Sauropoda, figures of remains of..... 274-328, 390 Sawatch range of mountaius, pre-Cambrian rocks of 823
Sawyer, Wells M., work of...................... 78
Saxony, Cenomanian flora of................ 481, $482,512,514,530,531,532$
Scaly Clays of Italy, place and fossils of.... 470 $500,501,503,504$
Scelidosaurida, characters of................ 243
restoration of 410
Scelidosaurns Owen, geologic horizon of... 196
Scelidosaurus Ilarrisonii Owen, description
of restoration of.................... . 229-230
restoration of 410
Schagticoke, N. Y., overturned folds at.. 551, 552 Schell Creek range of monntains, pro-Cam-
brian rocks of........................... 822
Schenk, A., cited 535
Schimper, W. P., cited 515,535
Schist-conglomerate, fignres of 828 Schist and slafe, definitions of 633-634 Schists and slates, development of now min-
erals in 635
Schistose quartzite, origin and character of. 704 Schistosity, recovery of rocks from...... 706-707 Schistosity of metamorphic rocks, observa-
tions on............................ . . . 706-707
Schizoneura.. 521
Schizoneura horensis Heer...................... 519
Schleichert, O., work of 83
Schmidt. L.. M., work of 41
Schrader, F. C., geologic work by'............. . . 15
Schuchert, Charlos, work of.................... 38
Schuylkill River, Ponnsylvania, disappearanco of folds with increascd depth
seen on......................................
601
Scidmore, E. R., Alaskan wood presented
for identification by...................... 451
Scleropteris . 520,521
Scleropteris acntidens Sap.................... 513
Scleropteris debilior Sap....................... 529
Scleropteris densior Sap.......................... 519
Scleropteris Pomelii Sap......................... . . 519
Scleropteris proxima Sap 519
Scleroptcris sinuata Sap 519, 521

Page
Scleronteris subdentata Sap................... 519
scleropteris tenuisceta Sup
519
Scleropteris tenuisecta sap
319
Scleropteris rirginica Funt 521
Scleropteris Zeilleri sap
519
Scotland, Coral liag of
Scott, D. H., aill ly \qquad 48. Sedmore Point, Isle of Wight, beds of...... 493
Seerls, fossil, in the Lower ('retaceons: of Enclancl
483

Secley, H. G., dinosaur fignrel ly 219
seguenza, fi.. cited 500

Smonian, flora of the 481. 482, 530-532
Serquence of similar beds, stratigraphiceri-

> dential valne of

386
Smuci:1
Serquial husitanica Heer

Sequoian type of structure in fossil wood
of the Potomac formation........... 499
29,532

Sequoiites Ciardneri Carr
Serquiites ovalis Carr.
Settefonti, Italy, fossils foum at
Severn River, Maryland, plant bearing beds on

Shaler, N. S., work14-15
Shanklin, lslo of Wirht, fossils from..
487

Sharpe, Daniel, eitell 515, 634
Sharpe and Tyndall, cited..................... 869
Shasta formation, geologic place of.......... 470
Shear of rocks umler pressure.. 862, 860
Shinárump formation, fossils of 498
Siberia, oolite of $531,532,536$
Silerite, metasmatic alterations of. 690
Silesia (Austrian), Urgonian flora of.. 481, 482, 530
Silicates. paper prepared ly F. W. Clarke on constitution of
Silicification and serpentinization, leseription of.
Silver and gold, statisties of production of. 51,59
Sincmurian formation of Portural. 517
Slate, origin aud character of 705
Slate and schist, definitions of 633-634
Slates (rooting) of New Tork aml Viermont. geolugic mapping of.
Slates and schists, de relopment of new minerals in-.
smith, A. W.. determination of sediment, etc., in Alaskan raters by.
Smithsonian Institntion, acknowledgment to.
Smytlı, C. H., cited 771
Smytb, H. L., work of........................... 23

$$
\text { cited ... } \quad 84
$$

Soapstone, statistics of protuction of.......55, 60
Solms-Laubarh, II., paleontologic work of. 484
502, 503,505,506
Surh, II. C., citerl................. 633, 634, 635, 869
South Carolina, allotment of money for geo-
logic work in.
work on trold areas of21-22
detemination of geologic age of phos phate rock of

South Dakota, allotment of money for topograplic work in
rage.
\qquad
hydrographic work m.................... 48
topngraphic work in 68, 69, 71
fossil wood and creads of 484, 499
Sonth of England, geoloyical map of the... 467. $479, \mathrm{Pl}$. XCVII
Spheria phylostichoides sap................... 529
Spharnlites Ternenilli Cof 514
sphenodiscus Thligi Choff............................. 5it
sphenolepidium.............................. 533, 534
sphenolepilium Choflati Sap 519
Sphenolepidium debile Heer 529
Sphemolepidimm Kurrianum (Dunk.) Heer. 483,
529, 530. 534
sphenolepidinm Sternbergianum (Duuk
Hear
529, 530. 534
Sphempteris.................. 520, 521, 522, 533, 535
Sphenopteris acutidens Sap 519, 529
Sphenopteris adjuncta Sal…................. 519
Sphenopteris aneimix formis Sap.............. 529
sphenoteris angustiloba Hecr 529
Sphenopteris anticolobula Sal \ldots............ 519
Sphenopteris hreviloba Sap 519
Splenopteris eapillaris Sap 529
Sphenopteris cercalensis sap 529
Sphenopteris Choffatiana in fracretacicas Sap 529
Sphenopteris Cordai (Dunk.) S'rhenk 529, 530
Sphenopteris crenularis Sap.................. 529
Sphenopteris cuneifida Sap.................... $52 n$
Sphenopteris deliliformis Sap................. 529
Sphenopteris idebilior Sap 529
Sphenopteris deflexa Sap..................... 519
Sphemopteris Helgadoi Sap................. 519, 522
Sphemopteris densa Salı 519
Splenopteris dissertifolia Sap.............. 519, 529
Sphenupteris dissectifurmis Sap 520
Sphenopteris Fittoni Sers 483
Sphenopteris tabellina sap.................. 529
Sphenopteris tlabellinervis Sap 529
Spluenopteris thabellisecta Sap................ 529
Sphenopteris Fontainci ser.................... 483
Splenopteris fracta Sap 519
Sphenopteris ginkgoides Sap................. 529
Sphenopteris Gcepperti ….................... 484
sphenopteris (iomexiana Heer 529
Sphenopteris involrens Sap................. 529
Sphenopteris latiloba Font 522
phemopteris limerisecta Sap 529
Sphenopteris lobulifera Sap 529
Sphenopteris lupulina Heer................. 5,5
sphenopteris marginata Sap 519, 522
Sphenopteris microrlada Sap................ . 519
Sphenopteris microlepisina Sap 519
Sphonopteris minima Sap..................... 519
Sphenopteris odontoceras Sap................ 519
Sphenopteris oratiloba Sap................. 519, 522
Sphenopteris pallida Sap..................... 518
Sphenopteris palmificla Sap 519. 522
Sphenopteris pedieellata Sap................. 51 .
sphenopteris phumervis Heer............... 52 .
Sphenopteris polyclada Sap 529
Sphenopteris proxima Sap 519
Sphenopteris pseudo Cordai Sap 529
Sphenopteris psendolepida sap 52
Sphemopteris pyguara *ำ.....................

Shemopteris tenelliloha אap................ 50.020
sphenopteris tenchreetat ap 5
Sphenopteris temufissat sap 529
Sphenopteris trapezoidea Sap 520
sphenopteris tricholoba sap 520
Sphempteris trifida Sal sphenospondylus seeler. paleontologicallies of. 2.26
pitzbergen, Oolite ilora of . . . $482,484,530,531,532$ Urgonian of. 530
jurri, J. E., Wrork af 31
Starlhypteris minutal sap. $520,529,530$
Stamford dike. Clarkshore Jlountain, Mas- saclusetis, uncomformity deter- mined ly 727
Stanton, T. IV., work of 38-39
Staten Islansl. (retaceons plant-bearing beds
of $473,52: 3.521$

Stecel lock Lalke series of rockes of the
Lake Supertor region, orver of for
mationsin.
Sternsallria, definition of 143
lesuription of characters of . . .
omparison of with Ornithopoda $3-19 t$
191
cologic distribution of. 196
families aud genera of. $42-243$
Sterosanridar, lescriptions of forms of... 186-202 eharacters of 242
figures of remaing of 330-348, 394, 398-406
lescrintion of restoration of 194-195
charaters of 194-195
probablo itentity of Omosan'us with 299
Stegosaurus aflinis llarsh, descriptiou of post-pubie bone of 191
Stegosaurus steuops Marsh. description and figure of pelvis of 190,340
fires of Stegosaurus suleatus Marsh, description of dermal spines of 193
figure of remains of 344
Stegusanrus ungula
of brain of 188
description of ischium of: 119,191
deseription of dermal spinè of 192
Stenerdorf, Hungarg; Lias of 535, 53:
Stephentown, N. Y., werturned anticliur nt. 551, 553
terrholopluss tiabelatils Mar*l, figures ot remains of 364, 370, 378, $38 \geq .336,406$ for mentatication li 4
sterenson, cíted 148, it
Stockloridge, Mass., figure of folded strata at..............
II. N., wotkot 556
Stokes II. N., wotkot. 42
cone, statisties of production of55
Storrow, samuel, work ot 43
Stose, G. II .. work of 25.80
(out, O. V. P., wourk ul 47
Strahan, Aubrer cited 493
Strain of rocks mader pressure, dataileth ont
sideration of 80-867
gencral remarlis un 808
Stratigraplive relatious of clearate and fis- sility to 668
elations of fanles to. 678
elation of metanorphic sedimentary rocks to.. 0-7-708
relations of metanorinhic i, meons ronkbre-Camlerian), detailed consideration
ofStress of rocks muder prossure, platies aml
eflects wf.mat lematia al . cousideration of............ 850 -$.880-$
$85 . .5,57-50$
relation ot strain to. תifit-868Erneral remarks on.868
stretchintr in rucks, evillances of. 07-563
Strike and dip, relation of faults to 674Stronetmal materials, statistios of prochuc.
tionof. .5-56
Struthio camelus Lima, fignres of homes
of ご, 360Strithiosaurlas linuzel (- Cratarmums seroleys, groulogic horizon aml gemeral
characters of.
219
Suers, E., cited 73:3
Sulpliur, statistics of production of 57, 60
Sutherlandshire, Scotland, Coral Risc ot. 487
Sutton, Frank, work ot. 64
Sweden, Ilhetie of. 538
Synclinoria, definition and trenes of 607-
608, 609-611, 612, 613-6:0

T.

Trenidinm lusitanicnm Heer................... 529
Teniopteris Beyrichii (Sclenck) Sew...... 483 Treniopteris Beyrichii situerba Sow........ 483 Treniopteris Dawsoni Sew..................... 483
Taff, I. A., work of................................. 17
Taonurits procerus H(er........................... 520
Taonurus supparius Hecr........................ 520
Taylor, L. H., work of. 47
Tirylorsville, Va., fossil plant from........ 499
Tejon and Chico faunas, diserimination of".. 38
Tempskya Schimperi Corda.................. 483
Tenuessee, allotment of mone $\mathrm{y}^{\text {for }}$ fur geologic
work in......................................
allotment of money for topographic
worli $11 . ~$ 3
reologic work in....................... . . 18-19, 20
toprographic work in.................. . 65, 68, 71
photographic work in...... 79
Tension joints, rescription of 668-670 ''ertiary beds of Gay Head section, Ilar-
thas Vineyard, Mass., work on...... 39
lertiary flora of Portngal...................... . . 516
'Tertiary' fossils collceted in Florida.... . . . 39-40
Tertiary Mactridx, monographpreparedon. 40
rage.
Texas, allotment of money for geologic work in .
allotment of money for topographie work in

13
reoloric work in -.............................
hydrographic work in........................ topographic work in 65, 66, 68, 69, 70, 71 pre-Cambrian rocks of. 814
Thaumatopteris. . 511,535
Theropoda, definition of......................... 143 descriptions of remains of.... 146-151, 153-163 European ... 163 descriptions of families and genera of. 203-209 characters of . 228, 239 families and genera of.................. 239-240 figures of remains of. 248-252, 256-272, 360, 408 Thompson, A. H., work of.63

Thompson, Gillert, work of
Thomson and Tait, cited..... 637, 847, 848, 856, 862
Thrust (or reverse) faults, relation of folds
to 674-676
relations of cleavage and fissility to. . 659-660 figure of. 673
Thuya 534
Thuy゚ites.
Thuyites Choffati Heer 520
Thurites debilis Sap.. 529
Thuyites densior Sap 5 529
Thuyites leptocladus Sap 520
Thusites pulchelliformis Sap 520, 529
Thuyites sp. Bristow 483
Thyrsopteris.. 522,535
Thyrsopteris densifolia Font................... 522
Thyrsopteris elliptica Font 522
Thyrsopteris elongata Geyl.................. 484 522

Thyrsopteris insignis Font. 522
Thyrsopieris Meekiana Font 522
Thyrsopteris minuta Heer 520
Thyrsopteris pachyrachis Font.............. 522
Thyrsopteris rarinervis Font 484
Tilgato Forest, fossils of. 492
Tilgate Grit, character of 477--478
Tin, North Carolina ores of.......................... 52
Titanosauridæ, cliaracters of................. 242
Titanosaurus, discovery and naming of remains of
185

Titanosaurus montanus, discovers of remains of................................ 164
Toarcian of Portugal, plant beds of........ 517
Tompkins, V.C., work of........................ . 47, 48
Topley, William, cited............................. 475
Topographic Branch, work of 61-77
Topographic maps, mode of preparation of manuscripts for
Topographic sheets, report of progress in engraving of 83-84
Topographic work, allotment to.............. 12-13
Topography, work of Division of............ 64-66
Torosaurus, descriptions of remains of... 214-216
Torosaurus gladius Marsh, figures of remains of.

368, 370
Torosaurus latus Marsh, characters of. ... 214-215 figures of remains of................... 368
Torres-Vedras, Portugal, Neocomian flora
\qquad

L'owson, l:. M., work of
Page.
-.... 65, 77
Trachodontide (Hadrusauridx), characters of 244
genus of.. . 221
paleontologic allies of 226
Trachodon Leidy ($=$ Hadrosaurus Leidy and Diclonius Cope), remains of.........
structural difference between Claosau. us and

Trachodon breviceps Marsh, figures of remains of. 394
Transrerse folds, examples of............. 553-554
Trappean rocks discovered and mapped in Massachusetts
Triangulation, work of Division of.......... 62-63
Triangulation (primary) executcd by the
Uniteri States Geological Survey
from 1882 to 1894 , summary of.... 875-885
instruments used in...................... . . 878-879
expense of... . . 881
dcgree of accuracy of.................... . 880-881
Trias of Italy... 509
Trias of North Carolina, cycad trunk from. 487
fossil wood from............................... 499
Triassic dinosaurs, descriptions of remains
of 146-151
description of footprints of............... 151
geographio distribution of 152
figures of remains of 248-254
Triassic flora of America. 517, 520, 521
Triassic fossils, study of
39
Triceratops, description of remains of ... 208-214
description of restoration of.............. 218
characters of 228
figures of remains of....................... . 384
Triceratop shorridus Marsh, size of skull of. 208
figures of remains of........................ 382
Triceratops prorsus Marsh, description of restoration of 218
figures of remains of 362-366, 372-386, 402 restoration of 386,402, 404 Triceratops scrratus Marsh, figures of remains of..................... $364,366,398,400$ Trinity beds of Texas 480, 481, 482,530 Tunbridge Wells Sand, geologic place and thickness of

477, 479
Turner, H. W., work of........................... . 35

Tuscaloosa formation, plants from........... 470, $472,513,523,539$
correlation of Potomac formation with. 40
Tweedy, Frank, work of........................ 66
Twin Glaciers, Alaska, description of 427
Tyadall, John, cited................................ . . 634
TJson, P. T., dinosaurian remains found by. 164
Tyson, Philip, plant remains found by...... 503
'Tysonia.. . . 503
Tysonia marylandica Font 503

U.

Uinta Mountains, pre-Cambrian rocks of... 820
Umber, statistics of production of........... 58
Uucompahgre Mountains, pre-Cambrian
rocks of 824
Unconformity, stratigraphic evidential

l'age.Went Tirginia, allutmentsof moner for erologic work in.
allotment of money for topographicwork in11
geologic work17, 18
paleontologic work in 21
hydrographic, work in 45, 49
topographic work in
64, 68, 69, 71
Wheat, Joseph II., work of$+{ }^{7}$
White, C. A., cited
20-91
White, C. Davil, work of 20-21
White Creek, Washington County, Newlork, figure showing alternatingbeds of prieated shale and quarziteat...557
cleavage landing at 561-562
Whituer, J. D.. citer 750-760
Widdringtonites524
20,529
Widdringtonites debilis Sap
Widiringtonites pygmas Sap 529
Wieser, Frauces, work of 78
Willeux, Juseph, aill by 40
Williamsonia minima sap 529
Trillingdon, Sussex 4!2. 494
Willis, Bailey, work of 17, 80 กf.
eited 595, 604, 614, 623, 666. 667, 677
acknowledgments to 589
Williaus, G. H., cited $433,826,835,837$
Williams, I. S., Alaskan fosssils identrfietby
citerWillianstown, Ma*s., longitndinal folding
faulting, and cleavage atWilson, II. M., work of555
Winslow, Arthur, eited504
Wirt, W. D., work of 84, 86
Wisconsin, geologie work in 24
Witham, Henry, cited 499
Wolff, J. E., work of 16,837
Wood, George M., work of. 79
Wool, Searles Valcutine, eited $4: 6$
Wond Glacier, Alaska, description of 108

Page.
Woodward, Heury, Scelidosanrus restored by ..
Woodward, li. S., cited 699
Whod worth, J. B., work of.................... 39
Wright. G. F., cited on sand and gravel deposits about Glacier Bay, Alaska 435, 438
cited on velocity of Muir Glacier. Alas

$$
\text { ka... } 445
$$

Wyoming, allotment of money for geologic work in.
19hylrographic work in
topographic work \quad in49

- Y.
Yatesia yatesii (Carr.) Wrard 483
Yellowatone National Park, work on geolng ie maps of 33
studies of fossils of 38, 39
work on geologic mappling of 29
Yokoyana, Matejiro, cited $48 t$
Torkshire, Oolite flora of. 482, 484, 515, 530
51 511
flora of the 511
Yuecites
Fuccites fimbriatus Sap 520
Ynecites fractifolius Sap 529
Z.
Zamia 488
Zambujeiro, Portugal, plants found near 523
Zamites gramineus var. Mnudax 515
Zanelodon (Plateosanrus), a genus of dino
sanrs, characters of 235-230
Zanclorlontidæ (Plateosaurida), characters of. 239
Ziguo, Aehille, eited 535, 530
Zinc, statistirs of, production of 51,59
58, 60Zinc-white, statisties of prodnetion of......
Zittel, K. A. yon, cast of type specimen ofCompsognathus longipes furnishedby.228

